| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmidsssn0 | GIF version | ||
| Description: Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgmidsssn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| mgmidsssn0.z | ⊢ 0 = (0g‘𝐺) |
| mgmidsssn0.p | ⊢ + = (+g‘𝐺) |
| mgmidsssn0.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
| Ref | Expression |
|---|---|
| mgmidsssn0 | ⊢ (𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmidsssn0.o | . 2 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
| 2 | simpr 110 | . . . . . . . 8 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) | |
| 3 | mgmidsssn0.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mgmidsssn0.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝐺) | |
| 5 | mgmidsssn0.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 6 | oveq1 5964 | . . . . . . . . . . . . 13 ⊢ (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦)) | |
| 7 | 6 | eqeq1d 2215 | . . . . . . . . . . . 12 ⊢ (𝑧 = 𝑥 → ((𝑧 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦)) |
| 8 | 7 | ovanraleqv 5981 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
| 9 | 8 | rspcev 2881 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)) |
| 10 | 9 | adantl 277 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)) |
| 11 | 3, 4, 5, 10 | ismgmid 13284 | . . . . . . . 8 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) ↔ 0 = 𝑥)) |
| 12 | 2, 11 | mpbid 147 | . . . . . . 7 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 0 = 𝑥) |
| 13 | 12 | eqcomd 2212 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 = 0 ) |
| 14 | velsn 3655 | . . . . . 6 ⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 15 | 13, 14 | sylibr 134 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 ∈ { 0 }) |
| 16 | 15 | expr 375 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
| 17 | 16 | ralrimiva 2580 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
| 18 | rabss 3274 | . . 3 ⊢ ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 } ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) | |
| 19 | 17, 18 | sylibr 134 | . 2 ⊢ (𝐺 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 }) |
| 20 | 1, 19 | eqsstrid 3243 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 }) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 {crab 2489 ⊆ wss 3170 {csn 3638 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 0gc0g 13163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 df-0g 13165 |
| This theorem is referenced by: gsumress 13302 gsumvallem2 13400 |
| Copyright terms: Public domain | W3C validator |