ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmidsssn0 GIF version

Theorem mgmidsssn0 13291
Description: Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
mgmidsssn0.b 𝐵 = (Base‘𝐺)
mgmidsssn0.z 0 = (0g𝐺)
mgmidsssn0.p + = (+g𝐺)
mgmidsssn0.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
Assertion
Ref Expression
mgmidsssn0 (𝐺𝑉𝑂 ⊆ { 0 })
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑉   𝑥, 0 ,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem mgmidsssn0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mgmidsssn0.o . 2 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
2 simpr 110 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
3 mgmidsssn0.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
4 mgmidsssn0.z . . . . . . . . 9 0 = (0g𝐺)
5 mgmidsssn0.p . . . . . . . . 9 + = (+g𝐺)
6 oveq1 5964 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦))
76eqeq1d 2215 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((𝑧 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦))
87ovanraleqv 5981 . . . . . . . . . . 11 (𝑧 = 𝑥 → (∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
98rspcev 2881 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) → ∃𝑧𝐵𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦))
109adantl 277 . . . . . . . . 9 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ∃𝑧𝐵𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦))
113, 4, 5, 10ismgmid 13284 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) ↔ 0 = 𝑥))
122, 11mpbid 147 . . . . . . 7 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 0 = 𝑥)
1312eqcomd 2212 . . . . . 6 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 = 0 )
14 velsn 3655 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
1513, 14sylibr 134 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 ∈ { 0 })
1615expr 375 . . . 4 ((𝐺𝑉𝑥𝐵) → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
1716ralrimiva 2580 . . 3 (𝐺𝑉 → ∀𝑥𝐵 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
18 rabss 3274 . . 3 ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 } ↔ ∀𝑥𝐵 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
1917, 18sylibr 134 . 2 (𝐺𝑉 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 })
201, 19eqsstrid 3243 1 (𝐺𝑉𝑂 ⊆ { 0 })
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  wss 3170  {csn 3638  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  0gc0g 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-0g 13165
This theorem is referenced by:  gsumress  13302  gsumvallem2  13400
  Copyright terms: Public domain W3C validator