ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmidsssn0 GIF version

Theorem mgmidsssn0 12808
Description: Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
mgmidsssn0.b 𝐵 = (Base‘𝐺)
mgmidsssn0.z 0 = (0g𝐺)
mgmidsssn0.p + = (+g𝐺)
mgmidsssn0.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
Assertion
Ref Expression
mgmidsssn0 (𝐺𝑉𝑂 ⊆ { 0 })
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑉   𝑥, 0 ,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem mgmidsssn0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mgmidsssn0.o . 2 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
2 simpr 110 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
3 mgmidsssn0.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
4 mgmidsssn0.z . . . . . . . . 9 0 = (0g𝐺)
5 mgmidsssn0.p . . . . . . . . 9 + = (+g𝐺)
6 oveq1 5884 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦))
76eqeq1d 2186 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((𝑧 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦))
87ovanraleqv 5901 . . . . . . . . . . 11 (𝑧 = 𝑥 → (∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
98rspcev 2843 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) → ∃𝑧𝐵𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦))
109adantl 277 . . . . . . . . 9 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ∃𝑧𝐵𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦))
113, 4, 5, 10ismgmid 12801 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) ↔ 0 = 𝑥))
122, 11mpbid 147 . . . . . . 7 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 0 = 𝑥)
1312eqcomd 2183 . . . . . 6 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 = 0 )
14 velsn 3611 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
1513, 14sylibr 134 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 ∈ { 0 })
1615expr 375 . . . 4 ((𝐺𝑉𝑥𝐵) → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
1716ralrimiva 2550 . . 3 (𝐺𝑉 → ∀𝑥𝐵 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
18 rabss 3234 . . 3 ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 } ↔ ∀𝑥𝐵 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
1917, 18sylibr 134 . 2 (𝐺𝑉 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 })
201, 19eqsstrid 3203 1 (𝐺𝑉𝑂 ⊆ { 0 })
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3131  {csn 3594  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  0gc0g 12710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-0g 12712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator