| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmidsssn0 | GIF version | ||
| Description: Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgmidsssn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| mgmidsssn0.z | ⊢ 0 = (0g‘𝐺) |
| mgmidsssn0.p | ⊢ + = (+g‘𝐺) |
| mgmidsssn0.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
| Ref | Expression |
|---|---|
| mgmidsssn0 | ⊢ (𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmidsssn0.o | . 2 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
| 2 | simpr 110 | . . . . . . . 8 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) | |
| 3 | mgmidsssn0.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mgmidsssn0.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝐺) | |
| 5 | mgmidsssn0.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 6 | oveq1 5932 | . . . . . . . . . . . . 13 ⊢ (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦)) | |
| 7 | 6 | eqeq1d 2205 | . . . . . . . . . . . 12 ⊢ (𝑧 = 𝑥 → ((𝑧 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦)) |
| 8 | 7 | ovanraleqv 5949 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
| 9 | 8 | rspcev 2868 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)) |
| 10 | 9 | adantl 277 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)) |
| 11 | 3, 4, 5, 10 | ismgmid 13079 | . . . . . . . 8 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) ↔ 0 = 𝑥)) |
| 12 | 2, 11 | mpbid 147 | . . . . . . 7 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 0 = 𝑥) |
| 13 | 12 | eqcomd 2202 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 = 0 ) |
| 14 | velsn 3640 | . . . . . 6 ⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 15 | 13, 14 | sylibr 134 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 ∈ { 0 }) |
| 16 | 15 | expr 375 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
| 17 | 16 | ralrimiva 2570 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
| 18 | rabss 3261 | . . 3 ⊢ ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 } ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) | |
| 19 | 17, 18 | sylibr 134 | . 2 ⊢ (𝐺 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 }) |
| 20 | 1, 19 | eqsstrid 3230 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 }) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 {crab 2479 ⊆ wss 3157 {csn 3623 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 0gc0g 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-0g 12960 |
| This theorem is referenced by: gsumress 13097 gsumvallem2 13195 |
| Copyright terms: Public domain | W3C validator |