ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmidsssn0 GIF version

Theorem mgmidsssn0 13412
Description: Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
mgmidsssn0.b 𝐵 = (Base‘𝐺)
mgmidsssn0.z 0 = (0g𝐺)
mgmidsssn0.p + = (+g𝐺)
mgmidsssn0.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
Assertion
Ref Expression
mgmidsssn0 (𝐺𝑉𝑂 ⊆ { 0 })
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑉   𝑥, 0 ,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem mgmidsssn0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mgmidsssn0.o . 2 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
2 simpr 110 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
3 mgmidsssn0.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
4 mgmidsssn0.z . . . . . . . . 9 0 = (0g𝐺)
5 mgmidsssn0.p . . . . . . . . 9 + = (+g𝐺)
6 oveq1 6007 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦))
76eqeq1d 2238 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((𝑧 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦))
87ovanraleqv 6024 . . . . . . . . . . 11 (𝑧 = 𝑥 → (∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)))
98rspcev 2907 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) → ∃𝑧𝐵𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦))
109adantl 277 . . . . . . . . 9 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ∃𝑧𝐵𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦))
113, 4, 5, 10ismgmid 13405 . . . . . . . 8 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) ↔ 0 = 𝑥))
122, 11mpbid 147 . . . . . . 7 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 0 = 𝑥)
1312eqcomd 2235 . . . . . 6 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 = 0 )
14 velsn 3683 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
1513, 14sylibr 134 . . . . 5 ((𝐺𝑉 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 ∈ { 0 })
1615expr 375 . . . 4 ((𝐺𝑉𝑥𝐵) → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
1716ralrimiva 2603 . . 3 (𝐺𝑉 → ∀𝑥𝐵 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
18 rabss 3301 . . 3 ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 } ↔ ∀𝑥𝐵 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 }))
1917, 18sylibr 134 . 2 (𝐺𝑉 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 })
201, 19eqsstrid 3270 1 (𝐺𝑉𝑂 ⊆ { 0 })
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  {csn 3666  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  0gc0g 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286
This theorem is referenced by:  gsumress  13423  gsumvallem2  13521
  Copyright terms: Public domain W3C validator