![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemj0 | GIF version |
Description: Lemma for ennnfone 12439. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
Ref | Expression |
---|---|
ennnfonelemj0 | ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 9204 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | eqid 2187 | . . . . . 6 ⊢ 0 = 0 | |
3 | 2 | iftruei 3552 | . . . . 5 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) = ∅ |
4 | 0ex 4142 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | eqeltri 2260 | . . . 4 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V |
6 | eqeq1 2194 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0)) | |
7 | fvoveq1 5911 | . . . . . 6 ⊢ (𝑥 = 0 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(0 − 1))) | |
8 | 6, 7 | ifbieq2d 3570 | . . . . 5 ⊢ (𝑥 = 0 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
9 | ennnfonelemh.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
10 | 8, 9 | fvmptg 5605 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
11 | 1, 5, 10 | mp2an 426 | . . 3 ⊢ (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1))) |
12 | 11, 3 | eqtri 2208 | . 2 ⊢ (𝐽‘0) = ∅ |
13 | dmeq 4839 | . . . 4 ⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) | |
14 | 13 | eleq1d 2256 | . . 3 ⊢ (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω)) |
15 | fun0 5286 | . . . . 5 ⊢ Fun ∅ | |
16 | 0ss 3473 | . . . . 5 ⊢ ∅ ⊆ (ω × 𝐴) | |
17 | 15, 16 | pm3.2i 272 | . . . 4 ⊢ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)) |
18 | omex 4604 | . . . . . 6 ⊢ ω ∈ V | |
19 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
20 | focdmex 6129 | . . . . . 6 ⊢ (ω ∈ V → (𝐹:ω–onto→𝐴 → 𝐴 ∈ V)) | |
21 | 18, 19, 20 | mpsyl 65 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
22 | elpmg 6677 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) | |
23 | 21, 18, 22 | sylancl 413 | . . . 4 ⊢ (𝜑 → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) |
24 | 17, 23 | mpbiri 168 | . . 3 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑pm ω)) |
25 | dm0 4853 | . . . . 5 ⊢ dom ∅ = ∅ | |
26 | peano1 4605 | . . . . 5 ⊢ ∅ ∈ ω | |
27 | 25, 26 | eqeltri 2260 | . . . 4 ⊢ dom ∅ ∈ ω |
28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → dom ∅ ∈ ω) |
29 | 14, 24, 28 | elrabd 2907 | . 2 ⊢ (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
30 | 12, 29 | eqeltrid 2274 | 1 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ∀wral 2465 ∃wrex 2466 {crab 2469 Vcvv 2749 ∪ cun 3139 ⊆ wss 3141 ∅c0 3434 ifcif 3546 {csn 3604 ⟨cop 3607 ↦ cmpt 4076 suc csuc 4377 ωcom 4601 × cxp 4636 ◡ccnv 4637 dom cdm 4638 “ cima 4641 Fun wfun 5222 –onto→wfo 5226 ‘cfv 5228 (class class class)co 5888 ∈ cmpo 5890 freccfrec 6404 ↑pm cpm 6662 0cc0 7824 1c1 7825 + caddc 7827 − cmin 8141 ℕ0cn0 9189 ℤcz 9266 seqcseq 10458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-1cn 7917 ax-icn 7919 ax-addcl 7920 ax-mulcl 7922 ax-i2m1 7929 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pm 6664 df-n0 9190 |
This theorem is referenced by: ennnfonelemh 12418 ennnfonelem0 12419 ennnfonelemp1 12420 ennnfonelemom 12422 |
Copyright terms: Public domain | W3C validator |