ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemj0 GIF version

Theorem ennnfonelemj0 12427
Description: Lemma for ennnfone 12451. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemj0 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Distinct variable groups:   𝐴,𝑔   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐴(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑔,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemj0
StepHypRef Expression
1 0nn0 9211 . . . 4 0 ∈ ℕ0
2 eqid 2189 . . . . . 6 0 = 0
32iftruei 3555 . . . . 5 if(0 = 0, ∅, (𝑁‘(0 − 1))) = ∅
4 0ex 4145 . . . . 5 ∅ ∈ V
53, 4eqeltri 2262 . . . 4 if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V
6 eqeq1 2196 . . . . . 6 (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0))
7 fvoveq1 5915 . . . . . 6 (𝑥 = 0 → (𝑁‘(𝑥 − 1)) = (𝑁‘(0 − 1)))
86, 7ifbieq2d 3573 . . . . 5 (𝑥 = 0 → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
108, 9fvmptg 5609 . . . 4 ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
111, 5, 10mp2an 426 . . 3 (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1)))
1211, 3eqtri 2210 . 2 (𝐽‘0) = ∅
13 dmeq 4842 . . . 4 (𝑔 = ∅ → dom 𝑔 = dom ∅)
1413eleq1d 2258 . . 3 (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω))
15 fun0 5290 . . . . 5 Fun ∅
16 0ss 3476 . . . . 5 ∅ ⊆ (ω × 𝐴)
1715, 16pm3.2i 272 . . . 4 (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))
18 omex 4607 . . . . . 6 ω ∈ V
19 ennnfonelemh.f . . . . . 6 (𝜑𝐹:ω–onto𝐴)
20 focdmex 6135 . . . . . 6 (ω ∈ V → (𝐹:ω–onto𝐴𝐴 ∈ V))
2118, 19, 20mpsyl 65 . . . . 5 (𝜑𝐴 ∈ V)
22 elpmg 6683 . . . . 5 ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))))
2321, 18, 22sylancl 413 . . . 4 (𝜑 → (∅ ∈ (𝐴pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))))
2417, 23mpbiri 168 . . 3 (𝜑 → ∅ ∈ (𝐴pm ω))
25 dm0 4856 . . . . 5 dom ∅ = ∅
26 peano1 4608 . . . . 5 ∅ ∈ ω
2725, 26eqeltri 2262 . . . 4 dom ∅ ∈ ω
2827a1i 9 . . 3 (𝜑 → dom ∅ ∈ ω)
2914, 24, 28elrabd 2910 . 2 (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
3012, 29eqeltrid 2276 1 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2160  wne 2360  wral 2468  wrex 2469  {crab 2472  Vcvv 2752  cun 3142  wss 3144  c0 3437  ifcif 3549  {csn 3607  cop 3610  cmpt 4079  suc csuc 4380  ωcom 4604   × cxp 4639  ccnv 4640  dom cdm 4641  cima 4644  Fun wfun 5226  ontowfo 5230  cfv 5232  (class class class)co 5892  cmpo 5894  freccfrec 6410  pm cpm 6668  0cc0 7831  1c1 7832   + caddc 7834  cmin 8148  0cn0 9196  cz 9273  seqcseq 10465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-1cn 7924  ax-icn 7926  ax-addcl 7927  ax-mulcl 7929  ax-i2m1 7936
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-ov 5895  df-oprab 5896  df-mpo 5897  df-pm 6670  df-n0 9197
This theorem is referenced by:  ennnfonelemh  12430  ennnfonelem0  12431  ennnfonelemp1  12432  ennnfonelemom  12434
  Copyright terms: Public domain W3C validator