Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemj0 | GIF version |
Description: Lemma for ennnfone 12358. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
Ref | Expression |
---|---|
ennnfonelemj0 | ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 9129 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | eqid 2165 | . . . . . 6 ⊢ 0 = 0 | |
3 | 2 | iftruei 3526 | . . . . 5 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) = ∅ |
4 | 0ex 4109 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | eqeltri 2239 | . . . 4 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V |
6 | eqeq1 2172 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0)) | |
7 | fvoveq1 5865 | . . . . . 6 ⊢ (𝑥 = 0 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(0 − 1))) | |
8 | 6, 7 | ifbieq2d 3544 | . . . . 5 ⊢ (𝑥 = 0 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
9 | ennnfonelemh.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
10 | 8, 9 | fvmptg 5562 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
11 | 1, 5, 10 | mp2an 423 | . . 3 ⊢ (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1))) |
12 | 11, 3 | eqtri 2186 | . 2 ⊢ (𝐽‘0) = ∅ |
13 | dmeq 4804 | . . . 4 ⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) | |
14 | 13 | eleq1d 2235 | . . 3 ⊢ (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω)) |
15 | fun0 5246 | . . . . 5 ⊢ Fun ∅ | |
16 | 0ss 3447 | . . . . 5 ⊢ ∅ ⊆ (ω × 𝐴) | |
17 | 15, 16 | pm3.2i 270 | . . . 4 ⊢ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)) |
18 | omex 4570 | . . . . . 6 ⊢ ω ∈ V | |
19 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
20 | focdmex 10700 | . . . . . 6 ⊢ ((ω ∈ V ∧ 𝐹:ω–onto→𝐴) → 𝐴 ∈ V) | |
21 | 18, 19, 20 | sylancr 411 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
22 | elpmg 6630 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) | |
23 | 21, 18, 22 | sylancl 410 | . . . 4 ⊢ (𝜑 → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) |
24 | 17, 23 | mpbiri 167 | . . 3 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑pm ω)) |
25 | dm0 4818 | . . . . 5 ⊢ dom ∅ = ∅ | |
26 | peano1 4571 | . . . . 5 ⊢ ∅ ∈ ω | |
27 | 25, 26 | eqeltri 2239 | . . . 4 ⊢ dom ∅ ∈ ω |
28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → dom ∅ ∈ ω) |
29 | 14, 24, 28 | elrabd 2884 | . 2 ⊢ (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
30 | 12, 29 | eqeltrid 2253 | 1 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃wrex 2445 {crab 2448 Vcvv 2726 ∪ cun 3114 ⊆ wss 3116 ∅c0 3409 ifcif 3520 {csn 3576 〈cop 3579 ↦ cmpt 4043 suc csuc 4343 ωcom 4567 × cxp 4602 ◡ccnv 4603 dom cdm 4604 “ cima 4607 Fun wfun 5182 –onto→wfo 5186 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 freccfrec 6358 ↑pm cpm 6615 0cc0 7753 1c1 7754 + caddc 7756 − cmin 8069 ℕ0cn0 9114 ℤcz 9191 seqcseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-i2m1 7858 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pm 6617 df-n0 9115 |
This theorem is referenced by: ennnfonelemh 12337 ennnfonelem0 12338 ennnfonelemp1 12339 ennnfonelemom 12341 |
Copyright terms: Public domain | W3C validator |