ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemj0 GIF version

Theorem ennnfonelemj0 11948
Description: Lemma for ennnfone 11972. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemj0 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Distinct variable groups:   𝐴,𝑔   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐴(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑔,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemj0
StepHypRef Expression
1 0nn0 9015 . . . 4 0 ∈ ℕ0
2 eqid 2140 . . . . . 6 0 = 0
32iftruei 3484 . . . . 5 if(0 = 0, ∅, (𝑁‘(0 − 1))) = ∅
4 0ex 4062 . . . . 5 ∅ ∈ V
53, 4eqeltri 2213 . . . 4 if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V
6 eqeq1 2147 . . . . . 6 (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0))
7 fvoveq1 5804 . . . . . 6 (𝑥 = 0 → (𝑁‘(𝑥 − 1)) = (𝑁‘(0 − 1)))
86, 7ifbieq2d 3500 . . . . 5 (𝑥 = 0 → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
108, 9fvmptg 5504 . . . 4 ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
111, 5, 10mp2an 423 . . 3 (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1)))
1211, 3eqtri 2161 . 2 (𝐽‘0) = ∅
13 dmeq 4746 . . . 4 (𝑔 = ∅ → dom 𝑔 = dom ∅)
1413eleq1d 2209 . . 3 (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω))
15 fun0 5188 . . . . 5 Fun ∅
16 0ss 3405 . . . . 5 ∅ ⊆ (ω × 𝐴)
1715, 16pm3.2i 270 . . . 4 (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))
18 omex 4514 . . . . . 6 ω ∈ V
19 ennnfonelemh.f . . . . . 6 (𝜑𝐹:ω–onto𝐴)
20 focdmex 10564 . . . . . 6 ((ω ∈ V ∧ 𝐹:ω–onto𝐴) → 𝐴 ∈ V)
2118, 19, 20sylancr 411 . . . . 5 (𝜑𝐴 ∈ V)
22 elpmg 6565 . . . . 5 ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))))
2321, 18, 22sylancl 410 . . . 4 (𝜑 → (∅ ∈ (𝐴pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))))
2417, 23mpbiri 167 . . 3 (𝜑 → ∅ ∈ (𝐴pm ω))
25 dm0 4760 . . . . 5 dom ∅ = ∅
26 peano1 4515 . . . . 5 ∅ ∈ ω
2725, 26eqeltri 2213 . . . 4 dom ∅ ∈ ω
2827a1i 9 . . 3 (𝜑 → dom ∅ ∈ ω)
2914, 24, 28elrabd 2845 . 2 (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
3012, 29eqeltrid 2227 1 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 820   = wceq 1332  wcel 1481  wne 2309  wral 2417  wrex 2418  {crab 2421  Vcvv 2689  cun 3073  wss 3075  c0 3367  ifcif 3478  {csn 3531  cop 3534  cmpt 3996  suc csuc 4294  ωcom 4511   × cxp 4544  ccnv 4545  dom cdm 4546  cima 4549  Fun wfun 5124  ontowfo 5128  cfv 5130  (class class class)co 5781  cmpo 5783  freccfrec 6294  pm cpm 6550  0cc0 7643  1c1 7644   + caddc 7646  cmin 7956  0cn0 9000  cz 9077  seqcseq 10248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-1cn 7736  ax-icn 7738  ax-addcl 7739  ax-mulcl 7741  ax-i2m1 7748
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pm 6552  df-n0 9001
This theorem is referenced by:  ennnfonelemh  11951  ennnfonelem0  11952  ennnfonelemp1  11953  ennnfonelemom  11955
  Copyright terms: Public domain W3C validator