| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemj0 | GIF version | ||
| Description: Lemma for ennnfone 12642. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | 
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | 
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | 
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | 
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | 
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) | 
| Ref | Expression | 
|---|---|
| ennnfonelemj0 | ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0nn0 9264 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | eqid 2196 | . . . . . 6 ⊢ 0 = 0 | |
| 3 | 2 | iftruei 3567 | . . . . 5 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) = ∅ | 
| 4 | 0ex 4160 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | eqeltri 2269 | . . . 4 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V | 
| 6 | eqeq1 2203 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0)) | |
| 7 | fvoveq1 5945 | . . . . . 6 ⊢ (𝑥 = 0 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(0 − 1))) | |
| 8 | 6, 7 | ifbieq2d 3585 | . . . . 5 ⊢ (𝑥 = 0 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) | 
| 9 | ennnfonelemh.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 10 | 8, 9 | fvmptg 5637 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) | 
| 11 | 1, 5, 10 | mp2an 426 | . . 3 ⊢ (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1))) | 
| 12 | 11, 3 | eqtri 2217 | . 2 ⊢ (𝐽‘0) = ∅ | 
| 13 | dmeq 4866 | . . . 4 ⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) | |
| 14 | 13 | eleq1d 2265 | . . 3 ⊢ (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω)) | 
| 15 | fun0 5316 | . . . . 5 ⊢ Fun ∅ | |
| 16 | 0ss 3489 | . . . . 5 ⊢ ∅ ⊆ (ω × 𝐴) | |
| 17 | 15, 16 | pm3.2i 272 | . . . 4 ⊢ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)) | 
| 18 | omex 4629 | . . . . . 6 ⊢ ω ∈ V | |
| 19 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 20 | focdmex 6172 | . . . . . 6 ⊢ (ω ∈ V → (𝐹:ω–onto→𝐴 → 𝐴 ∈ V)) | |
| 21 | 18, 19, 20 | mpsyl 65 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | 
| 22 | elpmg 6723 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) | |
| 23 | 21, 18, 22 | sylancl 413 | . . . 4 ⊢ (𝜑 → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) | 
| 24 | 17, 23 | mpbiri 168 | . . 3 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑pm ω)) | 
| 25 | dm0 4880 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 26 | peano1 4630 | . . . . 5 ⊢ ∅ ∈ ω | |
| 27 | 25, 26 | eqeltri 2269 | . . . 4 ⊢ dom ∅ ∈ ω | 
| 28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → dom ∅ ∈ ω) | 
| 29 | 14, 24, 28 | elrabd 2922 | . 2 ⊢ (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | 
| 30 | 12, 29 | eqeltrid 2283 | 1 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ∃wrex 2476 {crab 2479 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 ∅c0 3450 ifcif 3561 {csn 3622 〈cop 3625 ↦ cmpt 4094 suc csuc 4400 ωcom 4626 × cxp 4661 ◡ccnv 4662 dom cdm 4663 “ cima 4666 Fun wfun 5252 –onto→wfo 5256 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 freccfrec 6448 ↑pm cpm 6708 0cc0 7879 1c1 7880 + caddc 7882 − cmin 8197 ℕ0cn0 9249 ℤcz 9326 seqcseq 10539 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-i2m1 7984 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pm 6710 df-n0 9250 | 
| This theorem is referenced by: ennnfonelemh 12621 ennnfonelem0 12622 ennnfonelemp1 12623 ennnfonelemom 12625 | 
| Copyright terms: Public domain | W3C validator |