| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemj0 | GIF version | ||
| Description: Lemma for ennnfone 12796. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| Ref | Expression |
|---|---|
| ennnfonelemj0 | ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 9310 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | eqid 2205 | . . . . . 6 ⊢ 0 = 0 | |
| 3 | 2 | iftruei 3577 | . . . . 5 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) = ∅ |
| 4 | 0ex 4171 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | eqeltri 2278 | . . . 4 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V |
| 6 | eqeq1 2212 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0)) | |
| 7 | fvoveq1 5967 | . . . . . 6 ⊢ (𝑥 = 0 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(0 − 1))) | |
| 8 | 6, 7 | ifbieq2d 3595 | . . . . 5 ⊢ (𝑥 = 0 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
| 9 | ennnfonelemh.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 10 | 8, 9 | fvmptg 5655 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
| 11 | 1, 5, 10 | mp2an 426 | . . 3 ⊢ (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1))) |
| 12 | 11, 3 | eqtri 2226 | . 2 ⊢ (𝐽‘0) = ∅ |
| 13 | dmeq 4878 | . . . 4 ⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) | |
| 14 | 13 | eleq1d 2274 | . . 3 ⊢ (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω)) |
| 15 | fun0 5332 | . . . . 5 ⊢ Fun ∅ | |
| 16 | 0ss 3499 | . . . . 5 ⊢ ∅ ⊆ (ω × 𝐴) | |
| 17 | 15, 16 | pm3.2i 272 | . . . 4 ⊢ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)) |
| 18 | omex 4641 | . . . . . 6 ⊢ ω ∈ V | |
| 19 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 20 | focdmex 6200 | . . . . . 6 ⊢ (ω ∈ V → (𝐹:ω–onto→𝐴 → 𝐴 ∈ V)) | |
| 21 | 18, 19, 20 | mpsyl 65 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 22 | elpmg 6751 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) | |
| 23 | 21, 18, 22 | sylancl 413 | . . . 4 ⊢ (𝜑 → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) |
| 24 | 17, 23 | mpbiri 168 | . . 3 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑pm ω)) |
| 25 | dm0 4892 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 26 | peano1 4642 | . . . . 5 ⊢ ∅ ∈ ω | |
| 27 | 25, 26 | eqeltri 2278 | . . . 4 ⊢ dom ∅ ∈ ω |
| 28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → dom ∅ ∈ ω) |
| 29 | 14, 24, 28 | elrabd 2931 | . 2 ⊢ (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| 30 | 12, 29 | eqeltrid 2292 | 1 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ∀wral 2484 ∃wrex 2485 {crab 2488 Vcvv 2772 ∪ cun 3164 ⊆ wss 3166 ∅c0 3460 ifcif 3571 {csn 3633 〈cop 3636 ↦ cmpt 4105 suc csuc 4412 ωcom 4638 × cxp 4673 ◡ccnv 4674 dom cdm 4675 “ cima 4678 Fun wfun 5265 –onto→wfo 5269 ‘cfv 5271 (class class class)co 5944 ∈ cmpo 5946 freccfrec 6476 ↑pm cpm 6736 0cc0 7925 1c1 7926 + caddc 7928 − cmin 8243 ℕ0cn0 9295 ℤcz 9372 seqcseq 10592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-i2m1 8030 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pm 6738 df-n0 9296 |
| This theorem is referenced by: ennnfonelemh 12775 ennnfonelem0 12776 ennnfonelemp1 12777 ennnfonelemom 12779 |
| Copyright terms: Public domain | W3C validator |