| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemj0 | GIF version | ||
| Description: Lemma for ennnfone 12911. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| Ref | Expression |
|---|---|
| ennnfonelemj0 | ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 9345 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | eqid 2207 | . . . . . 6 ⊢ 0 = 0 | |
| 3 | 2 | iftruei 3585 | . . . . 5 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) = ∅ |
| 4 | 0ex 4187 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | eqeltri 2280 | . . . 4 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V |
| 6 | eqeq1 2214 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0)) | |
| 7 | fvoveq1 5990 | . . . . . 6 ⊢ (𝑥 = 0 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(0 − 1))) | |
| 8 | 6, 7 | ifbieq2d 3604 | . . . . 5 ⊢ (𝑥 = 0 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
| 9 | ennnfonelemh.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 10 | 8, 9 | fvmptg 5678 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
| 11 | 1, 5, 10 | mp2an 426 | . . 3 ⊢ (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1))) |
| 12 | 11, 3 | eqtri 2228 | . 2 ⊢ (𝐽‘0) = ∅ |
| 13 | dmeq 4897 | . . . 4 ⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) | |
| 14 | 13 | eleq1d 2276 | . . 3 ⊢ (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω)) |
| 15 | fun0 5351 | . . . . 5 ⊢ Fun ∅ | |
| 16 | 0ss 3507 | . . . . 5 ⊢ ∅ ⊆ (ω × 𝐴) | |
| 17 | 15, 16 | pm3.2i 272 | . . . 4 ⊢ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)) |
| 18 | omex 4659 | . . . . . 6 ⊢ ω ∈ V | |
| 19 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 20 | focdmex 6223 | . . . . . 6 ⊢ (ω ∈ V → (𝐹:ω–onto→𝐴 → 𝐴 ∈ V)) | |
| 21 | 18, 19, 20 | mpsyl 65 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 22 | elpmg 6774 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) | |
| 23 | 21, 18, 22 | sylancl 413 | . . . 4 ⊢ (𝜑 → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) |
| 24 | 17, 23 | mpbiri 168 | . . 3 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑pm ω)) |
| 25 | dm0 4911 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 26 | peano1 4660 | . . . . 5 ⊢ ∅ ∈ ω | |
| 27 | 25, 26 | eqeltri 2280 | . . . 4 ⊢ dom ∅ ∈ ω |
| 28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → dom ∅ ∈ ω) |
| 29 | 14, 24, 28 | elrabd 2938 | . 2 ⊢ (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| 30 | 12, 29 | eqeltrid 2294 | 1 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 ∃wrex 2487 {crab 2490 Vcvv 2776 ∪ cun 3172 ⊆ wss 3174 ∅c0 3468 ifcif 3579 {csn 3643 〈cop 3646 ↦ cmpt 4121 suc csuc 4430 ωcom 4656 × cxp 4691 ◡ccnv 4692 dom cdm 4693 “ cima 4696 Fun wfun 5284 –onto→wfo 5288 ‘cfv 5290 (class class class)co 5967 ∈ cmpo 5969 freccfrec 6499 ↑pm cpm 6759 0cc0 7960 1c1 7961 + caddc 7963 − cmin 8278 ℕ0cn0 9330 ℤcz 9407 seqcseq 10629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-i2m1 8065 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pm 6761 df-n0 9331 |
| This theorem is referenced by: ennnfonelemh 12890 ennnfonelem0 12891 ennnfonelemp1 12892 ennnfonelemom 12894 |
| Copyright terms: Public domain | W3C validator |