| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemj0 | GIF version | ||
| Description: Lemma for ennnfone 12996. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| Ref | Expression |
|---|---|
| ennnfonelemj0 | ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 9384 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | eqid 2229 | . . . . . 6 ⊢ 0 = 0 | |
| 3 | 2 | iftruei 3608 | . . . . 5 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) = ∅ |
| 4 | 0ex 4211 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | eqeltri 2302 | . . . 4 ⊢ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V |
| 6 | eqeq1 2236 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0)) | |
| 7 | fvoveq1 6024 | . . . . . 6 ⊢ (𝑥 = 0 → (◡𝑁‘(𝑥 − 1)) = (◡𝑁‘(0 − 1))) | |
| 8 | 6, 7 | ifbieq2d 3627 | . . . . 5 ⊢ (𝑥 = 0 → if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
| 9 | ennnfonelemh.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 10 | 8, 9 | fvmptg 5710 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (◡𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1)))) |
| 11 | 1, 5, 10 | mp2an 426 | . . 3 ⊢ (𝐽‘0) = if(0 = 0, ∅, (◡𝑁‘(0 − 1))) |
| 12 | 11, 3 | eqtri 2250 | . 2 ⊢ (𝐽‘0) = ∅ |
| 13 | dmeq 4923 | . . . 4 ⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) | |
| 14 | 13 | eleq1d 2298 | . . 3 ⊢ (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω)) |
| 15 | fun0 5379 | . . . . 5 ⊢ Fun ∅ | |
| 16 | 0ss 3530 | . . . . 5 ⊢ ∅ ⊆ (ω × 𝐴) | |
| 17 | 15, 16 | pm3.2i 272 | . . . 4 ⊢ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)) |
| 18 | omex 4685 | . . . . . 6 ⊢ ω ∈ V | |
| 19 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 20 | focdmex 6260 | . . . . . 6 ⊢ (ω ∈ V → (𝐹:ω–onto→𝐴 → 𝐴 ∈ V)) | |
| 21 | 18, 19, 20 | mpsyl 65 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 22 | elpmg 6811 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) | |
| 23 | 21, 18, 22 | sylancl 413 | . . . 4 ⊢ (𝜑 → (∅ ∈ (𝐴 ↑pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴)))) |
| 24 | 17, 23 | mpbiri 168 | . . 3 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑pm ω)) |
| 25 | dm0 4937 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 26 | peano1 4686 | . . . . 5 ⊢ ∅ ∈ ω | |
| 27 | 25, 26 | eqeltri 2302 | . . . 4 ⊢ dom ∅ ∈ ω |
| 28 | 27 | a1i 9 | . . 3 ⊢ (𝜑 → dom ∅ ∈ ω) |
| 29 | 14, 24, 28 | elrabd 2961 | . 2 ⊢ (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| 30 | 12, 29 | eqeltrid 2316 | 1 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 ∃wrex 2509 {crab 2512 Vcvv 2799 ∪ cun 3195 ⊆ wss 3197 ∅c0 3491 ifcif 3602 {csn 3666 〈cop 3669 ↦ cmpt 4145 suc csuc 4456 ωcom 4682 × cxp 4717 ◡ccnv 4718 dom cdm 4719 “ cima 4722 Fun wfun 5312 –onto→wfo 5316 ‘cfv 5318 (class class class)co 6001 ∈ cmpo 6003 freccfrec 6536 ↑pm cpm 6796 0cc0 7999 1c1 8000 + caddc 8002 − cmin 8317 ℕ0cn0 9369 ℤcz 9446 seqcseq 10669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-i2m1 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pm 6798 df-n0 9370 |
| This theorem is referenced by: ennnfonelemh 12975 ennnfonelem0 12976 ennnfonelemp1 12977 ennnfonelemom 12979 |
| Copyright terms: Public domain | W3C validator |