ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemj0 GIF version

Theorem ennnfonelemj0 12618
Description: Lemma for ennnfone 12642. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemj0 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Distinct variable groups:   𝐴,𝑔   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐴(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑔,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemj0
StepHypRef Expression
1 0nn0 9264 . . . 4 0 ∈ ℕ0
2 eqid 2196 . . . . . 6 0 = 0
32iftruei 3567 . . . . 5 if(0 = 0, ∅, (𝑁‘(0 − 1))) = ∅
4 0ex 4160 . . . . 5 ∅ ∈ V
53, 4eqeltri 2269 . . . 4 if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V
6 eqeq1 2203 . . . . . 6 (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0))
7 fvoveq1 5945 . . . . . 6 (𝑥 = 0 → (𝑁‘(𝑥 − 1)) = (𝑁‘(0 − 1)))
86, 7ifbieq2d 3585 . . . . 5 (𝑥 = 0 → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
108, 9fvmptg 5637 . . . 4 ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
111, 5, 10mp2an 426 . . 3 (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1)))
1211, 3eqtri 2217 . 2 (𝐽‘0) = ∅
13 dmeq 4866 . . . 4 (𝑔 = ∅ → dom 𝑔 = dom ∅)
1413eleq1d 2265 . . 3 (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω))
15 fun0 5316 . . . . 5 Fun ∅
16 0ss 3489 . . . . 5 ∅ ⊆ (ω × 𝐴)
1715, 16pm3.2i 272 . . . 4 (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))
18 omex 4629 . . . . . 6 ω ∈ V
19 ennnfonelemh.f . . . . . 6 (𝜑𝐹:ω–onto𝐴)
20 focdmex 6172 . . . . . 6 (ω ∈ V → (𝐹:ω–onto𝐴𝐴 ∈ V))
2118, 19, 20mpsyl 65 . . . . 5 (𝜑𝐴 ∈ V)
22 elpmg 6723 . . . . 5 ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))))
2321, 18, 22sylancl 413 . . . 4 (𝜑 → (∅ ∈ (𝐴pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))))
2417, 23mpbiri 168 . . 3 (𝜑 → ∅ ∈ (𝐴pm ω))
25 dm0 4880 . . . . 5 dom ∅ = ∅
26 peano1 4630 . . . . 5 ∅ ∈ ω
2725, 26eqeltri 2269 . . . 4 dom ∅ ∈ ω
2827a1i 9 . . 3 (𝜑 → dom ∅ ∈ ω)
2914, 24, 28elrabd 2922 . 2 (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
3012, 29eqeltrid 2283 1 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  cun 3155  wss 3157  c0 3450  ifcif 3561  {csn 3622  cop 3625  cmpt 4094  suc csuc 4400  ωcom 4626   × cxp 4661  ccnv 4662  dom cdm 4663  cima 4666  Fun wfun 5252  ontowfo 5256  cfv 5258  (class class class)co 5922  cmpo 5924  freccfrec 6448  pm cpm 6708  0cc0 7879  1c1 7880   + caddc 7882  cmin 8197  0cn0 9249  cz 9326  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-mulcl 7977  ax-i2m1 7984
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pm 6710  df-n0 9250
This theorem is referenced by:  ennnfonelemh  12621  ennnfonelem0  12622  ennnfonelemp1  12623  ennnfonelemom  12625
  Copyright terms: Public domain W3C validator