Proof of Theorem peano3nninf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | fveq1 5557 | 
. . . . . . . . . 10
⊢ (𝑝 = 𝐴 → (𝑝‘∪ 𝑖) = (𝐴‘∪ 𝑖)) | 
| 2 | 1 | ifeq2d 3579 | 
. . . . . . . . 9
⊢ (𝑝 = 𝐴 → if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))
= if(𝑖 = ∅,
1o, (𝐴‘∪ 𝑖))) | 
| 3 | 2 | mpteq2dv 4124 | 
. . . . . . . 8
⊢ (𝑝 = 𝐴 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))
= (𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝐴‘∪ 𝑖)))) | 
| 4 |   | peano3nninf.s | 
. . . . . . . 8
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦
(𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝑝‘∪ 𝑖)))) | 
| 5 |   | omex 4629 | 
. . . . . . . . 9
⊢ ω
∈ V | 
| 6 | 5 | mptex 5788 | 
. . . . . . . 8
⊢ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o,
(𝐴‘∪ 𝑖)))
∈ V | 
| 7 | 3, 4, 6 | fvmpt 5638 | 
. . . . . . 7
⊢ (𝐴 ∈
ℕ∞ → (𝑆‘𝐴) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝐴‘∪ 𝑖)))) | 
| 8 |   | eqeq1 2203 | 
. . . . . . . . 9
⊢ (𝑖 = ∅ → (𝑖 = ∅ ↔ ∅ =
∅)) | 
| 9 |   | unieq 3848 | 
. . . . . . . . . 10
⊢ (𝑖 = ∅ → ∪ 𝑖 =
∪ ∅) | 
| 10 | 9 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (𝑖 = ∅ → (𝐴‘∪ 𝑖) =
(𝐴‘∪ ∅)) | 
| 11 | 8, 10 | ifbieq2d 3585 | 
. . . . . . . 8
⊢ (𝑖 = ∅ → if(𝑖 = ∅, 1o,
(𝐴‘∪ 𝑖))
= if(∅ = ∅, 1o, (𝐴‘∪
∅))) | 
| 12 | 11 | adantl 277 | 
. . . . . . 7
⊢ ((𝐴 ∈
ℕ∞ ∧ 𝑖 = ∅) → if(𝑖 = ∅, 1o, (𝐴‘∪ 𝑖)) = if(∅ = ∅,
1o, (𝐴‘∪
∅))) | 
| 13 |   | peano1 4630 | 
. . . . . . . 8
⊢ ∅
∈ ω | 
| 14 | 13 | a1i 9 | 
. . . . . . 7
⊢ (𝐴 ∈
ℕ∞ → ∅ ∈ ω) | 
| 15 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ ∅ =
∅ | 
| 16 | 15 | iftruei 3567 | 
. . . . . . . . 9
⊢
if(∅ = ∅, 1o, (𝐴‘∪
∅)) = 1o | 
| 17 |   | 1onn 6578 | 
. . . . . . . . 9
⊢
1o ∈ ω | 
| 18 | 16, 17 | eqeltri 2269 | 
. . . . . . . 8
⊢
if(∅ = ∅, 1o, (𝐴‘∪
∅)) ∈ ω | 
| 19 | 18 | a1i 9 | 
. . . . . . 7
⊢ (𝐴 ∈
ℕ∞ → if(∅ = ∅, 1o, (𝐴‘∪ ∅)) ∈ ω) | 
| 20 | 7, 12, 14, 19 | fvmptd 5642 | 
. . . . . 6
⊢ (𝐴 ∈
ℕ∞ → ((𝑆‘𝐴)‘∅) = if(∅ = ∅,
1o, (𝐴‘∪
∅))) | 
| 21 | 20, 16 | eqtrdi 2245 | 
. . . . 5
⊢ (𝐴 ∈
ℕ∞ → ((𝑆‘𝐴)‘∅) =
1o) | 
| 22 | 21 | adantr 276 | 
. . . 4
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
((𝑆‘𝐴)‘∅) =
1o) | 
| 23 |   | fveq1 5557 | 
. . . . . 6
⊢ ((𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅) →
((𝑆‘𝐴)‘∅) = ((𝑥 ∈ ω ↦
∅)‘∅)) | 
| 24 | 23 | adantl 277 | 
. . . . 5
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
((𝑆‘𝐴)‘∅) = ((𝑥 ∈ ω ↦
∅)‘∅)) | 
| 25 | 15 | a1i 9 | 
. . . . . . 7
⊢ (𝑥 = ∅ → ∅ =
∅) | 
| 26 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑥 ∈ ω ↦ ∅)
= (𝑥 ∈ ω ↦
∅) | 
| 27 | 25, 26 | fvmptg 5637 | 
. . . . . 6
⊢ ((∅
∈ ω ∧ ∅ ∈ ω) → ((𝑥 ∈ ω ↦
∅)‘∅) = ∅) | 
| 28 | 13, 13, 27 | mp2an 426 | 
. . . . 5
⊢ ((𝑥 ∈ ω ↦
∅)‘∅) = ∅ | 
| 29 | 24, 28 | eqtrdi 2245 | 
. . . 4
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
((𝑆‘𝐴)‘∅) = ∅) | 
| 30 | 22, 29 | eqtr3d 2231 | 
. . 3
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
1o = ∅) | 
| 31 |   | 1n0 6490 | 
. . . . 5
⊢
1o ≠ ∅ | 
| 32 | 31 | neii 2369 | 
. . . 4
⊢  ¬
1o = ∅ | 
| 33 | 32 | a1i 9 | 
. . 3
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
¬ 1o = ∅) | 
| 34 | 30, 33 | pm2.65da 662 | 
. 2
⊢ (𝐴 ∈
ℕ∞ → ¬ (𝑆‘𝐴) = (𝑥 ∈ ω ↦
∅)) | 
| 35 | 34 | neqned 2374 | 
1
⊢ (𝐴 ∈
ℕ∞ → (𝑆‘𝐴) ≠ (𝑥 ∈ ω ↦
∅)) |