Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano3nninf GIF version

Theorem peano3nninf 15497
Description: The successor function on is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypothesis
Ref Expression
peano3nninf.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
peano3nninf (𝐴 ∈ ℕ → (𝑆𝐴) ≠ (𝑥 ∈ ω ↦ ∅))
Distinct variable groups:   𝐴,𝑖,𝑝   𝑆,𝑖,𝑥   𝑥,𝑝
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑝)

Proof of Theorem peano3nninf
StepHypRef Expression
1 fveq1 5553 . . . . . . . . . 10 (𝑝 = 𝐴 → (𝑝 𝑖) = (𝐴 𝑖))
21ifeq2d 3575 . . . . . . . . 9 (𝑝 = 𝐴 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝐴 𝑖)))
32mpteq2dv 4120 . . . . . . . 8 (𝑝 = 𝐴 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝐴 𝑖))))
4 peano3nninf.s . . . . . . . 8 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
5 omex 4625 . . . . . . . . 9 ω ∈ V
65mptex 5784 . . . . . . . 8 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝐴 𝑖))) ∈ V
73, 4, 6fvmpt 5634 . . . . . . 7 (𝐴 ∈ ℕ → (𝑆𝐴) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝐴 𝑖))))
8 eqeq1 2200 . . . . . . . . 9 (𝑖 = ∅ → (𝑖 = ∅ ↔ ∅ = ∅))
9 unieq 3844 . . . . . . . . . 10 (𝑖 = ∅ → 𝑖 = ∅)
109fveq2d 5558 . . . . . . . . 9 (𝑖 = ∅ → (𝐴 𝑖) = (𝐴 ∅))
118, 10ifbieq2d 3581 . . . . . . . 8 (𝑖 = ∅ → if(𝑖 = ∅, 1o, (𝐴 𝑖)) = if(∅ = ∅, 1o, (𝐴 ∅)))
1211adantl 277 . . . . . . 7 ((𝐴 ∈ ℕ𝑖 = ∅) → if(𝑖 = ∅, 1o, (𝐴 𝑖)) = if(∅ = ∅, 1o, (𝐴 ∅)))
13 peano1 4626 . . . . . . . 8 ∅ ∈ ω
1413a1i 9 . . . . . . 7 (𝐴 ∈ ℕ → ∅ ∈ ω)
15 eqid 2193 . . . . . . . . . 10 ∅ = ∅
1615iftruei 3563 . . . . . . . . 9 if(∅ = ∅, 1o, (𝐴 ∅)) = 1o
17 1onn 6573 . . . . . . . . 9 1o ∈ ω
1816, 17eqeltri 2266 . . . . . . . 8 if(∅ = ∅, 1o, (𝐴 ∅)) ∈ ω
1918a1i 9 . . . . . . 7 (𝐴 ∈ ℕ → if(∅ = ∅, 1o, (𝐴 ∅)) ∈ ω)
207, 12, 14, 19fvmptd 5638 . . . . . 6 (𝐴 ∈ ℕ → ((𝑆𝐴)‘∅) = if(∅ = ∅, 1o, (𝐴 ∅)))
2120, 16eqtrdi 2242 . . . . 5 (𝐴 ∈ ℕ → ((𝑆𝐴)‘∅) = 1o)
2221adantr 276 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → ((𝑆𝐴)‘∅) = 1o)
23 fveq1 5553 . . . . . 6 ((𝑆𝐴) = (𝑥 ∈ ω ↦ ∅) → ((𝑆𝐴)‘∅) = ((𝑥 ∈ ω ↦ ∅)‘∅))
2423adantl 277 . . . . 5 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → ((𝑆𝐴)‘∅) = ((𝑥 ∈ ω ↦ ∅)‘∅))
2515a1i 9 . . . . . . 7 (𝑥 = ∅ → ∅ = ∅)
26 eqid 2193 . . . . . . 7 (𝑥 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅)
2725, 26fvmptg 5633 . . . . . 6 ((∅ ∈ ω ∧ ∅ ∈ ω) → ((𝑥 ∈ ω ↦ ∅)‘∅) = ∅)
2813, 13, 27mp2an 426 . . . . 5 ((𝑥 ∈ ω ↦ ∅)‘∅) = ∅
2924, 28eqtrdi 2242 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → ((𝑆𝐴)‘∅) = ∅)
3022, 29eqtr3d 2228 . . 3 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → 1o = ∅)
31 1n0 6485 . . . . 5 1o ≠ ∅
3231neii 2366 . . . 4 ¬ 1o = ∅
3332a1i 9 . . 3 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → ¬ 1o = ∅)
3430, 33pm2.65da 662 . 2 (𝐴 ∈ ℕ → ¬ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅))
3534neqned 2371 1 (𝐴 ∈ ℕ → (𝑆𝐴) ≠ (𝑥 ∈ ω ↦ ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2164  wne 2364  c0 3446  ifcif 3557   cuni 3835  cmpt 4090  ωcom 4622  cfv 5254  1oc1o 6462  xnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469
This theorem is referenced by:  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator