Proof of Theorem peano3nninf
| Step | Hyp | Ref
| Expression |
| 1 | | fveq1 5560 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐴 → (𝑝‘∪ 𝑖) = (𝐴‘∪ 𝑖)) |
| 2 | 1 | ifeq2d 3580 |
. . . . . . . . 9
⊢ (𝑝 = 𝐴 → if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))
= if(𝑖 = ∅,
1o, (𝐴‘∪ 𝑖))) |
| 3 | 2 | mpteq2dv 4125 |
. . . . . . . 8
⊢ (𝑝 = 𝐴 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))
= (𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝐴‘∪ 𝑖)))) |
| 4 | | peano3nninf.s |
. . . . . . . 8
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦
(𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝑝‘∪ 𝑖)))) |
| 5 | | omex 4630 |
. . . . . . . . 9
⊢ ω
∈ V |
| 6 | 5 | mptex 5791 |
. . . . . . . 8
⊢ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o,
(𝐴‘∪ 𝑖)))
∈ V |
| 7 | 3, 4, 6 | fvmpt 5641 |
. . . . . . 7
⊢ (𝐴 ∈
ℕ∞ → (𝑆‘𝐴) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝐴‘∪ 𝑖)))) |
| 8 | | eqeq1 2203 |
. . . . . . . . 9
⊢ (𝑖 = ∅ → (𝑖 = ∅ ↔ ∅ =
∅)) |
| 9 | | unieq 3849 |
. . . . . . . . . 10
⊢ (𝑖 = ∅ → ∪ 𝑖 =
∪ ∅) |
| 10 | 9 | fveq2d 5565 |
. . . . . . . . 9
⊢ (𝑖 = ∅ → (𝐴‘∪ 𝑖) =
(𝐴‘∪ ∅)) |
| 11 | 8, 10 | ifbieq2d 3586 |
. . . . . . . 8
⊢ (𝑖 = ∅ → if(𝑖 = ∅, 1o,
(𝐴‘∪ 𝑖))
= if(∅ = ∅, 1o, (𝐴‘∪
∅))) |
| 12 | 11 | adantl 277 |
. . . . . . 7
⊢ ((𝐴 ∈
ℕ∞ ∧ 𝑖 = ∅) → if(𝑖 = ∅, 1o, (𝐴‘∪ 𝑖)) = if(∅ = ∅,
1o, (𝐴‘∪
∅))) |
| 13 | | peano1 4631 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 14 | 13 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈
ℕ∞ → ∅ ∈ ω) |
| 15 | | eqid 2196 |
. . . . . . . . . 10
⊢ ∅ =
∅ |
| 16 | 15 | iftruei 3568 |
. . . . . . . . 9
⊢
if(∅ = ∅, 1o, (𝐴‘∪
∅)) = 1o |
| 17 | | 1onn 6587 |
. . . . . . . . 9
⊢
1o ∈ ω |
| 18 | 16, 17 | eqeltri 2269 |
. . . . . . . 8
⊢
if(∅ = ∅, 1o, (𝐴‘∪
∅)) ∈ ω |
| 19 | 18 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈
ℕ∞ → if(∅ = ∅, 1o, (𝐴‘∪ ∅)) ∈ ω) |
| 20 | 7, 12, 14, 19 | fvmptd 5645 |
. . . . . 6
⊢ (𝐴 ∈
ℕ∞ → ((𝑆‘𝐴)‘∅) = if(∅ = ∅,
1o, (𝐴‘∪
∅))) |
| 21 | 20, 16 | eqtrdi 2245 |
. . . . 5
⊢ (𝐴 ∈
ℕ∞ → ((𝑆‘𝐴)‘∅) =
1o) |
| 22 | 21 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
((𝑆‘𝐴)‘∅) =
1o) |
| 23 | | fveq1 5560 |
. . . . . 6
⊢ ((𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅) →
((𝑆‘𝐴)‘∅) = ((𝑥 ∈ ω ↦
∅)‘∅)) |
| 24 | 23 | adantl 277 |
. . . . 5
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
((𝑆‘𝐴)‘∅) = ((𝑥 ∈ ω ↦
∅)‘∅)) |
| 25 | 15 | a1i 9 |
. . . . . . 7
⊢ (𝑥 = ∅ → ∅ =
∅) |
| 26 | | eqid 2196 |
. . . . . . 7
⊢ (𝑥 ∈ ω ↦ ∅)
= (𝑥 ∈ ω ↦
∅) |
| 27 | 25, 26 | fvmptg 5640 |
. . . . . 6
⊢ ((∅
∈ ω ∧ ∅ ∈ ω) → ((𝑥 ∈ ω ↦
∅)‘∅) = ∅) |
| 28 | 13, 13, 27 | mp2an 426 |
. . . . 5
⊢ ((𝑥 ∈ ω ↦
∅)‘∅) = ∅ |
| 29 | 24, 28 | eqtrdi 2245 |
. . . 4
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
((𝑆‘𝐴)‘∅) = ∅) |
| 30 | 22, 29 | eqtr3d 2231 |
. . 3
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
1o = ∅) |
| 31 | | 1n0 6499 |
. . . . 5
⊢
1o ≠ ∅ |
| 32 | 31 | neii 2369 |
. . . 4
⊢ ¬
1o = ∅ |
| 33 | 32 | a1i 9 |
. . 3
⊢ ((𝐴 ∈
ℕ∞ ∧ (𝑆‘𝐴) = (𝑥 ∈ ω ↦ ∅)) →
¬ 1o = ∅) |
| 34 | 30, 33 | pm2.65da 662 |
. 2
⊢ (𝐴 ∈
ℕ∞ → ¬ (𝑆‘𝐴) = (𝑥 ∈ ω ↦
∅)) |
| 35 | 34 | neqned 2374 |
1
⊢ (𝐴 ∈
ℕ∞ → (𝑆‘𝐴) ≠ (𝑥 ∈ ω ↦
∅)) |