Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano3nninf GIF version

Theorem peano3nninf 14040
Description: The successor function on is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypothesis
Ref Expression
peano3nninf.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
peano3nninf (𝐴 ∈ ℕ → (𝑆𝐴) ≠ (𝑥 ∈ ω ↦ ∅))
Distinct variable groups:   𝐴,𝑖,𝑝   𝑆,𝑖,𝑥   𝑥,𝑝
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑝)

Proof of Theorem peano3nninf
StepHypRef Expression
1 fveq1 5495 . . . . . . . . . 10 (𝑝 = 𝐴 → (𝑝 𝑖) = (𝐴 𝑖))
21ifeq2d 3544 . . . . . . . . 9 (𝑝 = 𝐴 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝐴 𝑖)))
32mpteq2dv 4080 . . . . . . . 8 (𝑝 = 𝐴 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝐴 𝑖))))
4 peano3nninf.s . . . . . . . 8 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
5 omex 4577 . . . . . . . . 9 ω ∈ V
65mptex 5722 . . . . . . . 8 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝐴 𝑖))) ∈ V
73, 4, 6fvmpt 5573 . . . . . . 7 (𝐴 ∈ ℕ → (𝑆𝐴) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝐴 𝑖))))
8 eqeq1 2177 . . . . . . . . 9 (𝑖 = ∅ → (𝑖 = ∅ ↔ ∅ = ∅))
9 unieq 3805 . . . . . . . . . 10 (𝑖 = ∅ → 𝑖 = ∅)
109fveq2d 5500 . . . . . . . . 9 (𝑖 = ∅ → (𝐴 𝑖) = (𝐴 ∅))
118, 10ifbieq2d 3550 . . . . . . . 8 (𝑖 = ∅ → if(𝑖 = ∅, 1o, (𝐴 𝑖)) = if(∅ = ∅, 1o, (𝐴 ∅)))
1211adantl 275 . . . . . . 7 ((𝐴 ∈ ℕ𝑖 = ∅) → if(𝑖 = ∅, 1o, (𝐴 𝑖)) = if(∅ = ∅, 1o, (𝐴 ∅)))
13 peano1 4578 . . . . . . . 8 ∅ ∈ ω
1413a1i 9 . . . . . . 7 (𝐴 ∈ ℕ → ∅ ∈ ω)
15 eqid 2170 . . . . . . . . . 10 ∅ = ∅
1615iftruei 3532 . . . . . . . . 9 if(∅ = ∅, 1o, (𝐴 ∅)) = 1o
17 1onn 6499 . . . . . . . . 9 1o ∈ ω
1816, 17eqeltri 2243 . . . . . . . 8 if(∅ = ∅, 1o, (𝐴 ∅)) ∈ ω
1918a1i 9 . . . . . . 7 (𝐴 ∈ ℕ → if(∅ = ∅, 1o, (𝐴 ∅)) ∈ ω)
207, 12, 14, 19fvmptd 5577 . . . . . 6 (𝐴 ∈ ℕ → ((𝑆𝐴)‘∅) = if(∅ = ∅, 1o, (𝐴 ∅)))
2120, 16eqtrdi 2219 . . . . 5 (𝐴 ∈ ℕ → ((𝑆𝐴)‘∅) = 1o)
2221adantr 274 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → ((𝑆𝐴)‘∅) = 1o)
23 fveq1 5495 . . . . . 6 ((𝑆𝐴) = (𝑥 ∈ ω ↦ ∅) → ((𝑆𝐴)‘∅) = ((𝑥 ∈ ω ↦ ∅)‘∅))
2423adantl 275 . . . . 5 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → ((𝑆𝐴)‘∅) = ((𝑥 ∈ ω ↦ ∅)‘∅))
2515a1i 9 . . . . . . 7 (𝑥 = ∅ → ∅ = ∅)
26 eqid 2170 . . . . . . 7 (𝑥 ∈ ω ↦ ∅) = (𝑥 ∈ ω ↦ ∅)
2725, 26fvmptg 5572 . . . . . 6 ((∅ ∈ ω ∧ ∅ ∈ ω) → ((𝑥 ∈ ω ↦ ∅)‘∅) = ∅)
2813, 13, 27mp2an 424 . . . . 5 ((𝑥 ∈ ω ↦ ∅)‘∅) = ∅
2924, 28eqtrdi 2219 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → ((𝑆𝐴)‘∅) = ∅)
3022, 29eqtr3d 2205 . . 3 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → 1o = ∅)
31 1n0 6411 . . . . 5 1o ≠ ∅
3231neii 2342 . . . 4 ¬ 1o = ∅
3332a1i 9 . . 3 ((𝐴 ∈ ℕ ∧ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅)) → ¬ 1o = ∅)
3430, 33pm2.65da 656 . 2 (𝐴 ∈ ℕ → ¬ (𝑆𝐴) = (𝑥 ∈ ω ↦ ∅))
3534neqned 2347 1 (𝐴 ∈ ℕ → (𝑆𝐴) ≠ (𝑥 ∈ ω ↦ ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  wne 2340  c0 3414  ifcif 3526   cuni 3796  cmpt 4050  ωcom 4574  cfv 5198  1oc1o 6388  xnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395
This theorem is referenced by:  exmidsbthrlem  14054
  Copyright terms: Public domain W3C validator