ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfaddmnf GIF version

Theorem pnfaddmnf 10042
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
pnfaddmnf (+∞ +𝑒 -∞) = 0

Proof of Theorem pnfaddmnf
StepHypRef Expression
1 pnfxr 8195 . . 3 +∞ ∈ ℝ*
2 mnfxr 8199 . . 3 -∞ ∈ ℝ*
3 xaddval 10037 . . 3 ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))))
41, 2, 3mp2an 426 . 2 (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))
5 eqid 2229 . . 3 +∞ = +∞
65iftruei 3608 . 2 if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞)
7 eqid 2229 . . 3 -∞ = -∞
87iftruei 3608 . 2 if(-∞ = -∞, 0, +∞) = 0
94, 6, 83eqtri 2254 1 (+∞ +𝑒 -∞) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  ifcif 3602  (class class class)co 6000  0cc0 7995   + caddc 7998  +∞cpnf 8174  -∞cmnf 8175  *cxr 8176   +𝑒 cxad 9962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-xadd 9965
This theorem is referenced by:  xnegid  10051  xaddcom  10053  xnegdi  10060  xsubge0  10073  xposdif  10074  xlesubadd  10075  xrmaxadd  11767  xblss2  15073
  Copyright terms: Public domain W3C validator