| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfaddmnf | GIF version | ||
| Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| pnfaddmnf | ⊢ (+∞ +𝑒 -∞) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 8160 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | mnfxr 8164 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | xaddval 10002 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) |
| 5 | eqid 2207 | . . 3 ⊢ +∞ = +∞ | |
| 6 | 5 | iftruei 3585 | . 2 ⊢ if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞) |
| 7 | eqid 2207 | . . 3 ⊢ -∞ = -∞ | |
| 8 | 7 | iftruei 3585 | . 2 ⊢ if(-∞ = -∞, 0, +∞) = 0 |
| 9 | 4, 6, 8 | 3eqtri 2232 | 1 ⊢ (+∞ +𝑒 -∞) = 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 ifcif 3579 (class class class)co 5967 0cc0 7960 + caddc 7963 +∞cpnf 8139 -∞cmnf 8140 ℝ*cxr 8141 +𝑒 cxad 9927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-xadd 9930 |
| This theorem is referenced by: xnegid 10016 xaddcom 10018 xnegdi 10025 xsubge0 10038 xposdif 10039 xlesubadd 10040 xrmaxadd 11687 xblss2 14992 |
| Copyright terms: Public domain | W3C validator |