| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfaddmnf | GIF version | ||
| Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| pnfaddmnf | ⊢ (+∞ +𝑒 -∞) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 8195 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | mnfxr 8199 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | xaddval 10037 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) |
| 5 | eqid 2229 | . . 3 ⊢ +∞ = +∞ | |
| 6 | 5 | iftruei 3608 | . 2 ⊢ if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞) |
| 7 | eqid 2229 | . . 3 ⊢ -∞ = -∞ | |
| 8 | 7 | iftruei 3608 | . 2 ⊢ if(-∞ = -∞, 0, +∞) = 0 |
| 9 | 4, 6, 8 | 3eqtri 2254 | 1 ⊢ (+∞ +𝑒 -∞) = 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ifcif 3602 (class class class)co 6000 0cc0 7995 + caddc 7998 +∞cpnf 8174 -∞cmnf 8175 ℝ*cxr 8176 +𝑒 cxad 9962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-xadd 9965 |
| This theorem is referenced by: xnegid 10051 xaddcom 10053 xnegdi 10060 xsubge0 10073 xposdif 10074 xlesubadd 10075 xrmaxadd 11767 xblss2 15073 |
| Copyright terms: Public domain | W3C validator |