ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfaddmnf GIF version

Theorem pnfaddmnf 9786
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
pnfaddmnf (+∞ +𝑒 -∞) = 0

Proof of Theorem pnfaddmnf
StepHypRef Expression
1 pnfxr 7951 . . 3 +∞ ∈ ℝ*
2 mnfxr 7955 . . 3 -∞ ∈ ℝ*
3 xaddval 9781 . . 3 ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))))
41, 2, 3mp2an 423 . 2 (+∞ +𝑒 -∞) = if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞)))))
5 eqid 2165 . . 3 +∞ = +∞
65iftruei 3526 . 2 if(+∞ = +∞, if(-∞ = -∞, 0, +∞), if(+∞ = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (+∞ + -∞))))) = if(-∞ = -∞, 0, +∞)
7 eqid 2165 . . 3 -∞ = -∞
87iftruei 3526 . 2 if(-∞ = -∞, 0, +∞) = 0
94, 6, 83eqtri 2190 1 (+∞ +𝑒 -∞) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  ifcif 3520  (class class class)co 5842  0cc0 7753   + caddc 7756  +∞cpnf 7930  -∞cmnf 7931  *cxr 7932   +𝑒 cxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-xadd 9709
This theorem is referenced by:  xnegid  9795  xaddcom  9797  xnegdi  9804  xsubge0  9817  xposdif  9818  xlesubadd  9819  xrmaxadd  11202  xblss2  13045
  Copyright terms: Public domain W3C validator