ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulg0 GIF version

Theorem mulg0 13505
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg0.b 𝐵 = (Base‘𝐺)
mulg0.o 0 = (0g𝐺)
mulg0.t · = (.g𝐺)
Assertion
Ref Expression
mulg0 (𝑋𝐵 → (0 · 𝑋) = 0 )

Proof of Theorem mulg0
StepHypRef Expression
1 0z 9390 . 2 0 ∈ ℤ
2 mulg0.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2206 . . . 4 (+g𝐺) = (+g𝐺)
4 mulg0.o . . . 4 0 = (0g𝐺)
5 eqid 2206 . . . 4 (invg𝐺) = (invg𝐺)
6 mulg0.t . . . 4 · = (.g𝐺)
7 eqid 2206 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
82, 3, 4, 5, 6, 7mulgval 13502 . . 3 ((0 ∈ ℤ ∧ 𝑋𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g𝐺), (ℕ × {𝑋}))‘0), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-0)))))
9 eqid 2206 . . . 4 0 = 0
109iftruei 3578 . . 3 if(0 = 0, 0 , if(0 < 0, (seq1((+g𝐺), (ℕ × {𝑋}))‘0), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-0)))) = 0
118, 10eqtrdi 2255 . 2 ((0 ∈ ℤ ∧ 𝑋𝐵) → (0 · 𝑋) = 0 )
121, 11mpan 424 1 (𝑋𝐵 → (0 · 𝑋) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  ifcif 3572  {csn 3634   class class class wbr 4047   × cxp 4677  cfv 5276  (class class class)co 5951  0cc0 7932  1c1 7933   < clt 8114  -cneg 8251  cn 9043  cz 9379  seqcseq 10599  Basecbs 12876  +gcplusg 12953  0gc0g 13132  invgcminusg 13377  .gcmg 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-seqfrec 10600  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-minusg 13380  df-mulg 13500
This theorem is referenced by:  mulgnn0gsum  13508  mulgnn0p1  13513  mulgnn0subcl  13515  mulgneg  13520  mulgaddcom  13526  mulginvcom  13527  mulgnn0z  13529  mulgnn0dir  13532  mulgneg2  13536  mulgnn0ass  13538  mhmmulg  13543  submmulg  13546  srgmulgass  13795  srgpcomp  13796  mulgass2  13864  lmodvsmmulgdi  14129  cnfldmulg  14382  cnfldexp  14383
  Copyright terms: Public domain W3C validator