Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulg0 | GIF version |
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg0.o | ⊢ 0 = (0g‘𝐺) |
mulg0.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9232 | . 2 ⊢ 0 ∈ ℤ | |
2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2173 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
5 | eqid 2173 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
7 | eqid 2173 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 12842 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
9 | eqid 2173 | . . . 4 ⊢ 0 = 0 | |
10 | 9 | iftruei 3535 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
11 | 8, 10 | eqtrdi 2222 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
12 | 1, 11 | mpan 424 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1351 ∈ wcel 2144 ifcif 3529 {csn 3586 class class class wbr 3995 × cxp 4615 ‘cfv 5205 (class class class)co 5862 0cc0 7783 1c1 7784 < clt 7963 -cneg 8100 ℕcn 8887 ℤcz 9221 seqcseq 10410 Basecbs 12425 +gcplusg 12489 0gc0g 12623 invgcminusg 12736 .gcmg 12839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 612 ax-in2 613 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-nul 4121 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-iinf 4578 ax-cnex 7874 ax-resscn 7875 ax-1cn 7876 ax-1re 7877 ax-icn 7878 ax-addcl 7879 ax-addrcl 7880 ax-mulcl 7881 ax-addcom 7883 ax-addass 7885 ax-distr 7887 ax-i2m1 7888 ax-0lt1 7889 ax-0id 7891 ax-rnegex 7892 ax-cnre 7894 ax-pre-ltirr 7895 ax-pre-ltwlin 7896 ax-pre-lttrn 7897 ax-pre-ltadd 7899 |
This theorem depends on definitions: df-bi 117 df-dc 833 df-3or 977 df-3an 978 df-tru 1354 df-fal 1357 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ne 2344 df-nel 2439 df-ral 2456 df-rex 2457 df-reu 2458 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-dif 3126 df-un 3128 df-in 3130 df-ss 3137 df-nul 3418 df-if 3530 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-tr 4094 df-id 4284 df-iord 4357 df-on 4359 df-ilim 4360 df-suc 4362 df-iom 4581 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-oprab 5866 df-mpo 5867 df-1st 6128 df-2nd 6129 df-recs 6293 df-frec 6379 df-pnf 7965 df-mnf 7966 df-xr 7967 df-ltxr 7968 df-le 7969 df-sub 8101 df-neg 8102 df-inn 8888 df-2 8946 df-n0 9145 df-z 9222 df-uz 9497 df-seqfrec 10411 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-minusg 12739 df-mulg 12840 |
This theorem is referenced by: mulgnn0p1 12850 mulgnn0subcl 12852 mulgneg 12857 mulgaddcom 12862 mulginvcom 12863 mulgnn0z 12865 mulgnn0dir 12868 mulgneg2 12872 mulgnn0ass 12874 mhmmulg 12879 |
Copyright terms: Public domain | W3C validator |