ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelem0 GIF version

Theorem ennnfonelem0 12565
Description: Lemma for ennnfone 12585. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelem0 (𝜑 → (𝐻‘0) = ∅)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐽   𝑥,𝑁   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑦,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelem0
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
21fveq1i 5556 . . 3 (𝐻‘0) = (seq0(𝐺, 𝐽)‘0)
3 ennnfonelemh.dceq . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
4 ennnfonelemh.f . . . . 5 (𝜑𝐹:ω–onto𝐴)
5 ennnfonelemh.ne . . . . 5 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
6 ennnfonelemh.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
7 ennnfonelemh.n . . . . 5 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
8 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
93, 4, 5, 6, 7, 8, 1ennnfonelemj0 12561 . . . 4 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
103, 4, 5, 6, 7, 8, 1ennnfonelemg 12563 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
11 0zd 9332 . . . 4 (𝜑 → 0 ∈ ℤ)
123, 4, 5, 6, 7, 8, 1ennnfonelemjn 12562 . . . 4 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
139, 10, 11, 12seq1cd 10543 . . 3 (𝜑 → (seq0(𝐺, 𝐽)‘0) = (𝐽‘0))
142, 13eqtrid 2238 . 2 (𝜑 → (𝐻‘0) = (𝐽‘0))
15 0nn0 9258 . . . 4 0 ∈ ℕ0
16 eqid 2193 . . . . . 6 0 = 0
1716iftruei 3564 . . . . 5 if(0 = 0, ∅, (𝑁‘(0 − 1))) = ∅
18 0ex 4157 . . . . 5 ∅ ∈ V
1917, 18eqeltri 2266 . . . 4 if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V
20 eqeq1 2200 . . . . . 6 (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0))
21 fvoveq1 5942 . . . . . 6 (𝑥 = 0 → (𝑁‘(𝑥 − 1)) = (𝑁‘(0 − 1)))
2220, 21ifbieq2d 3582 . . . . 5 (𝑥 = 0 → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
2322, 8fvmptg 5634 . . . 4 ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
2415, 19, 23mp2an 426 . . 3 (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1)))
2524, 17eqtri 2214 . 2 (𝐽‘0) = ∅
2614, 25eqtrdi 2242 1 (𝜑 → (𝐻‘0) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  cun 3152  c0 3447  ifcif 3558  {csn 3619  cop 3622  cmpt 4091  suc csuc 4397  ωcom 4623  ccnv 4659  dom cdm 4660  cima 4663  ontowfo 5253  cfv 5255  (class class class)co 5919  cmpo 5921  freccfrec 6445  pm cpm 6705  0cc0 7874  1c1 7875   + caddc 7877  cmin 8192  0cn0 9243  cz 9320  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pm 6707  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522
This theorem is referenced by:  ennnfonelem1  12567  ennnfonelemkh  12572  ennnfonelemhf1o  12573
  Copyright terms: Public domain W3C validator