ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldcls GIF version

Theorem cldcls 14091
Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
cldcls (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)

Proof of Theorem cldcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 14079 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 eqid 2189 . . . 4 𝐽 = 𝐽
32cldss 14082 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
42clsval 14088 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
51, 3, 4syl2anc 411 . 2 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
6 intmin 3879 . 2 (𝑆 ∈ (Clsd‘𝐽) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} = 𝑆)
75, 6eqtrd 2222 1 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  {crab 2472  wss 3144   cuni 3824   cint 3859  cfv 5235  Topctop 13974  Clsdccld 14069  clsccl 14071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-top 13975  df-cld 14072  df-cls 14074
This theorem is referenced by:  clstop  14104  clsss2  14106  cls0  14110
  Copyright terms: Public domain W3C validator