ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnbasval GIF version

Theorem ixpsnbasval 14098
Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnbasval ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Distinct variable groups:   𝑅,𝑓,𝑥   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpsnbasval
StepHypRef Expression
1 ixpsnval 6769 . . 3 (𝑋𝑊X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
21adantl 277 . 2 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
3 rlmfn 14085 . . . . . . . . . . . 12 ringLMod Fn V
4 elex 2774 . . . . . . . . . . . 12 (𝑅𝑉𝑅 ∈ V)
5 funfvex 5578 . . . . . . . . . . . . 13 ((Fun ringLMod ∧ 𝑅 ∈ dom ringLMod) → (ringLMod‘𝑅) ∈ V)
65funfni 5361 . . . . . . . . . . . 12 ((ringLMod Fn V ∧ 𝑅 ∈ V) → (ringLMod‘𝑅) ∈ V)
73, 4, 6sylancr 414 . . . . . . . . . . 11 (𝑅𝑉 → (ringLMod‘𝑅) ∈ V)
87anim1ci 341 . . . . . . . . . 10 ((𝑅𝑉𝑋𝑊) → (𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V))
9 xpsng 5740 . . . . . . . . . 10 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
108, 9syl 14 . . . . . . . . 9 ((𝑅𝑉𝑋𝑊) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
1110fveq1d 5563 . . . . . . . 8 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋))
12 fvsng 5761 . . . . . . . . 9 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
138, 12syl 14 . . . . . . . 8 ((𝑅𝑉𝑋𝑊) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
1411, 13eqtrd 2229 . . . . . . 7 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = (ringLMod‘𝑅))
1514fveq2d 5565 . . . . . 6 ((𝑅𝑉𝑋𝑊) → (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) = (Base‘(ringLMod‘𝑅)))
16 csbfv2g 5600 . . . . . . . 8 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))
17 csbfvg 5601 . . . . . . . . 9 (𝑋𝑊𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋))
1817fveq2d 5565 . . . . . . . 8 (𝑋𝑊 → (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
1916, 18eqtrd 2229 . . . . . . 7 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
2019adantl 277 . . . . . 6 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
21 rlmbasg 14087 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
2221adantr 276 . . . . . 6 ((𝑅𝑉𝑋𝑊) → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
2315, 20, 223eqtr4d 2239 . . . . 5 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑅))
2423eleq2d 2266 . . . 4 ((𝑅𝑉𝑋𝑊) → ((𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) ↔ (𝑓𝑋) ∈ (Base‘𝑅)))
2524anbi2d 464 . . 3 ((𝑅𝑉𝑋𝑊) → ((𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))))
2625abbidv 2314 . 2 ((𝑅𝑉𝑋𝑊) → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
272, 26eqtrd 2229 1 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cab 2182  Vcvv 2763  csb 3084  {csn 3623  cop 3626   × cxp 4662   Fn wfn 5254  cfv 5259  Xcixp 6766  Basecbs 12703  ringLModcrglmod 14066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-ixp 6767  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-sra 14067  df-rgmod 14068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator