Proof of Theorem ixpsnbasval
| Step | Hyp | Ref
| Expression |
| 1 | | ixpsnval 6769 |
. . 3
⊢ (𝑋 ∈ 𝑊 → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))}) |
| 2 | 1 | adantl 277 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))}) |
| 3 | | rlmfn 14085 |
. . . . . . . . . . . 12
⊢ ringLMod
Fn V |
| 4 | | elex 2774 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
| 5 | | funfvex 5578 |
. . . . . . . . . . . . 13
⊢ ((Fun
ringLMod ∧ 𝑅 ∈ dom
ringLMod) → (ringLMod‘𝑅) ∈ V) |
| 6 | 5 | funfni 5361 |
. . . . . . . . . . . 12
⊢
((ringLMod Fn V ∧ 𝑅 ∈ V) → (ringLMod‘𝑅) ∈ V) |
| 7 | 3, 4, 6 | sylancr 414 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑉 → (ringLMod‘𝑅) ∈ V) |
| 8 | 7 | anim1ci 341 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (𝑋 ∈ 𝑊 ∧ (ringLMod‘𝑅) ∈ V)) |
| 9 | | xpsng 5740 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({𝑋} × {(ringLMod‘𝑅)}) = {〈𝑋, (ringLMod‘𝑅)〉}) |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ({𝑋} × {(ringLMod‘𝑅)}) = {〈𝑋, (ringLMod‘𝑅)〉}) |
| 11 | 10 | fveq1d 5563 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = ({〈𝑋, (ringLMod‘𝑅)〉}‘𝑋)) |
| 12 | | fvsng 5761 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({〈𝑋, (ringLMod‘𝑅)〉}‘𝑋) = (ringLMod‘𝑅)) |
| 13 | 8, 12 | syl 14 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ({〈𝑋, (ringLMod‘𝑅)〉}‘𝑋) = (ringLMod‘𝑅)) |
| 14 | 11, 13 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = (ringLMod‘𝑅)) |
| 15 | 14 | fveq2d 5565 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) = (Base‘(ringLMod‘𝑅))) |
| 16 | | csbfv2g 5600 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑊 → ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘⦋𝑋 / 𝑥⦌(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) |
| 17 | | csbfvg 5601 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑊 → ⦋𝑋 / 𝑥⦌(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) |
| 18 | 17 | fveq2d 5565 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑊 → (Base‘⦋𝑋 / 𝑥⦌(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋))) |
| 19 | 16, 18 | eqtrd 2229 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑊 → ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋))) |
| 20 | 19 | adantl 277 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋))) |
| 21 | | rlmbasg 14087 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) |
| 22 | 21 | adantr 276 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) |
| 23 | 15, 20, 22 | 3eqtr4d 2239 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑅)) |
| 24 | 23 | eleq2d 2266 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ((𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) ↔ (𝑓‘𝑋) ∈ (Base‘𝑅))) |
| 25 | 24 | anbi2d 464 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ((𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) ↔ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅)))) |
| 26 | 25 | abbidv 2314 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅))}) |
| 27 | 2, 26 | eqtrd 2229 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅))}) |