ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnbasval GIF version

Theorem ixpsnbasval 13655
Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnbasval ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Distinct variable groups:   𝑅,𝑓,𝑥   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpsnbasval
StepHypRef Expression
1 ixpsnval 6715 . . 3 (𝑋𝑊X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
21adantl 277 . 2 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
3 rlmfn 13642 . . . . . . . . . . . 12 ringLMod Fn V
4 elex 2760 . . . . . . . . . . . 12 (𝑅𝑉𝑅 ∈ V)
5 funfvex 5544 . . . . . . . . . . . . 13 ((Fun ringLMod ∧ 𝑅 ∈ dom ringLMod) → (ringLMod‘𝑅) ∈ V)
65funfni 5328 . . . . . . . . . . . 12 ((ringLMod Fn V ∧ 𝑅 ∈ V) → (ringLMod‘𝑅) ∈ V)
73, 4, 6sylancr 414 . . . . . . . . . . 11 (𝑅𝑉 → (ringLMod‘𝑅) ∈ V)
87anim1ci 341 . . . . . . . . . 10 ((𝑅𝑉𝑋𝑊) → (𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V))
9 xpsng 5704 . . . . . . . . . 10 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
108, 9syl 14 . . . . . . . . 9 ((𝑅𝑉𝑋𝑊) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
1110fveq1d 5529 . . . . . . . 8 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋))
12 fvsng 5725 . . . . . . . . 9 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
138, 12syl 14 . . . . . . . 8 ((𝑅𝑉𝑋𝑊) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
1411, 13eqtrd 2220 . . . . . . 7 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = (ringLMod‘𝑅))
1514fveq2d 5531 . . . . . 6 ((𝑅𝑉𝑋𝑊) → (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) = (Base‘(ringLMod‘𝑅)))
16 csbfv2g 5565 . . . . . . . 8 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))
17 csbfvg 5566 . . . . . . . . 9 (𝑋𝑊𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋))
1817fveq2d 5531 . . . . . . . 8 (𝑋𝑊 → (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
1916, 18eqtrd 2220 . . . . . . 7 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
2019adantl 277 . . . . . 6 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
21 rlmbasg 13644 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
2221adantr 276 . . . . . 6 ((𝑅𝑉𝑋𝑊) → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
2315, 20, 223eqtr4d 2230 . . . . 5 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑅))
2423eleq2d 2257 . . . 4 ((𝑅𝑉𝑋𝑊) → ((𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) ↔ (𝑓𝑋) ∈ (Base‘𝑅)))
2524anbi2d 464 . . 3 ((𝑅𝑉𝑋𝑊) → ((𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))))
2625abbidv 2305 . 2 ((𝑅𝑉𝑋𝑊) → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
272, 26eqtrd 2220 1 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  {cab 2173  Vcvv 2749  csb 3069  {csn 3604  cop 3607   × cxp 4636   Fn wfn 5223  cfv 5228  Xcixp 6712  Basecbs 12476  ringLModcrglmod 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-ixp 6713  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-5 8995  df-6 8996  df-7 8997  df-8 8998  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-iress 12484  df-mulr 12565  df-sca 12567  df-vsca 12568  df-ip 12569  df-sra 13624  df-rgmod 13625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator