Proof of Theorem ixpsnbasval
Step | Hyp | Ref
| Expression |
1 | | ixpsnval 6715 |
. . 3
⊢ (𝑋 ∈ 𝑊 → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))}) |
2 | 1 | adantl 277 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))}) |
3 | | rlmfn 13642 |
. . . . . . . . . . . 12
⊢ ringLMod
Fn V |
4 | | elex 2760 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
5 | | funfvex 5544 |
. . . . . . . . . . . . 13
⊢ ((Fun
ringLMod ∧ 𝑅 ∈ dom
ringLMod) → (ringLMod‘𝑅) ∈ V) |
6 | 5 | funfni 5328 |
. . . . . . . . . . . 12
⊢
((ringLMod Fn V ∧ 𝑅 ∈ V) → (ringLMod‘𝑅) ∈ V) |
7 | 3, 4, 6 | sylancr 414 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑉 → (ringLMod‘𝑅) ∈ V) |
8 | 7 | anim1ci 341 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (𝑋 ∈ 𝑊 ∧ (ringLMod‘𝑅) ∈ V)) |
9 | | xpsng 5704 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({𝑋} × {(ringLMod‘𝑅)}) = {〈𝑋, (ringLMod‘𝑅)〉}) |
10 | 8, 9 | syl 14 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ({𝑋} × {(ringLMod‘𝑅)}) = {〈𝑋, (ringLMod‘𝑅)〉}) |
11 | 10 | fveq1d 5529 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = ({〈𝑋, (ringLMod‘𝑅)〉}‘𝑋)) |
12 | | fvsng 5725 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({〈𝑋, (ringLMod‘𝑅)〉}‘𝑋) = (ringLMod‘𝑅)) |
13 | 8, 12 | syl 14 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ({〈𝑋, (ringLMod‘𝑅)〉}‘𝑋) = (ringLMod‘𝑅)) |
14 | 11, 13 | eqtrd 2220 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = (ringLMod‘𝑅)) |
15 | 14 | fveq2d 5531 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) = (Base‘(ringLMod‘𝑅))) |
16 | | csbfv2g 5565 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑊 → ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘⦋𝑋 / 𝑥⦌(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) |
17 | | csbfvg 5566 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑊 → ⦋𝑋 / 𝑥⦌(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) |
18 | 17 | fveq2d 5531 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑊 → (Base‘⦋𝑋 / 𝑥⦌(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋))) |
19 | 16, 18 | eqtrd 2220 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑊 → ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋))) |
20 | 19 | adantl 277 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋))) |
21 | | rlmbasg 13644 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) |
22 | 21 | adantr 276 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) |
23 | 15, 20, 22 | 3eqtr4d 2230 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑅)) |
24 | 23 | eleq2d 2257 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ((𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) ↔ (𝑓‘𝑋) ∈ (Base‘𝑅))) |
25 | 24 | anbi2d 464 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ((𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) ↔ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅)))) |
26 | 25 | abbidv 2305 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅))}) |
27 | 2, 26 | eqtrd 2220 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅))}) |