ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnbasval GIF version

Theorem ixpsnbasval 14272
Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnbasval ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Distinct variable groups:   𝑅,𝑓,𝑥   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpsnbasval
StepHypRef Expression
1 ixpsnval 6795 . . 3 (𝑋𝑊X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
21adantl 277 . 2 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
3 rlmfn 14259 . . . . . . . . . . . 12 ringLMod Fn V
4 elex 2784 . . . . . . . . . . . 12 (𝑅𝑉𝑅 ∈ V)
5 funfvex 5600 . . . . . . . . . . . . 13 ((Fun ringLMod ∧ 𝑅 ∈ dom ringLMod) → (ringLMod‘𝑅) ∈ V)
65funfni 5381 . . . . . . . . . . . 12 ((ringLMod Fn V ∧ 𝑅 ∈ V) → (ringLMod‘𝑅) ∈ V)
73, 4, 6sylancr 414 . . . . . . . . . . 11 (𝑅𝑉 → (ringLMod‘𝑅) ∈ V)
87anim1ci 341 . . . . . . . . . 10 ((𝑅𝑉𝑋𝑊) → (𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V))
9 xpsng 5762 . . . . . . . . . 10 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
108, 9syl 14 . . . . . . . . 9 ((𝑅𝑉𝑋𝑊) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
1110fveq1d 5585 . . . . . . . 8 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋))
12 fvsng 5787 . . . . . . . . 9 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
138, 12syl 14 . . . . . . . 8 ((𝑅𝑉𝑋𝑊) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
1411, 13eqtrd 2239 . . . . . . 7 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = (ringLMod‘𝑅))
1514fveq2d 5587 . . . . . 6 ((𝑅𝑉𝑋𝑊) → (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) = (Base‘(ringLMod‘𝑅)))
16 csbfv2g 5622 . . . . . . . 8 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))
17 csbfvg 5623 . . . . . . . . 9 (𝑋𝑊𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋))
1817fveq2d 5587 . . . . . . . 8 (𝑋𝑊 → (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
1916, 18eqtrd 2239 . . . . . . 7 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
2019adantl 277 . . . . . 6 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
21 rlmbasg 14261 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
2221adantr 276 . . . . . 6 ((𝑅𝑉𝑋𝑊) → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
2315, 20, 223eqtr4d 2249 . . . . 5 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑅))
2423eleq2d 2276 . . . 4 ((𝑅𝑉𝑋𝑊) → ((𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) ↔ (𝑓𝑋) ∈ (Base‘𝑅)))
2524anbi2d 464 . . 3 ((𝑅𝑉𝑋𝑊) → ((𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))))
2625abbidv 2324 . 2 ((𝑅𝑉𝑋𝑊) → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
272, 26eqtrd 2239 1 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  csb 3094  {csn 3634  cop 3637   × cxp 4677   Fn wfn 5271  cfv 5276  Xcixp 6792  Basecbs 12876  ringLModcrglmod 14240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-ixp 6793  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-sra 14241  df-rgmod 14242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator