ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo GIF version

Theorem limcimo 13428
Description: Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcimo.b (𝜑𝐵 ∈ ℂ)
limcimo.bc (𝜑𝐵𝐶)
limcimo.bs (𝜑𝐵𝑆)
limcimo.c (𝜑𝐶 ∈ (𝐾t 𝑆))
limcimo.s (𝜑𝑆 ∈ {ℝ, ℂ})
limcimo.ca (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
limcflfcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
limcimo (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝐵,𝑞   𝐶,𝑞   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑞)   𝐴(𝑥,𝑞)   𝐶(𝑥)   𝑆(𝑥,𝑞)   𝐹(𝑞)   𝐾(𝑥,𝑞)

Proof of Theorem limcimo
Dummy variables 𝑒 𝑧 𝑓 𝑔 𝑤 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3993 . . . . . . . . . 10 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑧) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
21imbi2d 229 . . . . . . . . 9 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
32rexralbidv 2496 . . . . . . . 8 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
4 limcflf.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
5 limcflf.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℂ)
6 limcimo.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
74, 5, 6ellimc3ap 13424 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))))
87biimpa 294 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
98adantrr 476 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
109simprd 113 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
1110adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
129simpld 111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ ℂ)
1312adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 ∈ ℂ)
144, 5, 6ellimc3ap 13424 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐹 lim 𝐵) ↔ (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))))
1514biimpa 294 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 lim 𝐵)) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1615adantrl 475 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1716simpld 111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ ℂ)
1817adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑦 ∈ ℂ)
1913, 18subcld 8230 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) ∈ ℂ)
20 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 # 𝑦)
2113, 18, 20subap0d 8563 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) # 0)
2219, 21absrpclapd 11152 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ+)
2322rphalfcld 9666 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ((abs‘(𝑥𝑦)) / 2) ∈ ℝ+)
243, 11, 23rspcdva 2839 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
25 breq2 3993 . . . . . . . . . . . 12 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑤) − 𝑦)) < 𝑓 ↔ (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
2625imbi2d 229 . . . . . . . . . . 11 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2726rexralbidv 2496 . . . . . . . . . 10 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2816simprd 113 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
2928adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
3027, 29, 23rspcdva 2839 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
3130adantr 274 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
324ad4antr 491 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐹:𝐴⟶ℂ)
335ad4antr 491 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐴 ⊆ ℂ)
346ad4antr 491 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵 ∈ ℂ)
35 limcimo.bc . . . . . . . . . 10 (𝜑𝐵𝐶)
3635ad4antr 491 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝐶)
37 limcimo.bs . . . . . . . . . 10 (𝜑𝐵𝑆)
3837ad4antr 491 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝑆)
39 limcimo.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐾t 𝑆))
4039ad4antr 491 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐶 ∈ (𝐾t 𝑆))
41 limcimo.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
4241ad4antr 491 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑆 ∈ {ℝ, ℂ})
43 limcimo.ca . . . . . . . . . 10 (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
4443ad4antr 491 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
45 limcflfcntop.k . . . . . . . . 9 𝐾 = (MetOpen‘(abs ∘ − ))
46 simplrl 530 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑑 ∈ ℝ+)
47 simprl 526 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ (𝐹 lim 𝐵))
4847ad3antrrr 489 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑥 ∈ (𝐹 lim 𝐵))
49 simprr 527 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ (𝐹 lim 𝐵))
5049ad3antrrr 489 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑦 ∈ (𝐹 lim 𝐵))
51 simplrr 531 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
52 simprl 526 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑔 ∈ ℝ+)
53 simprr 527 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 13427 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5531, 54rexlimddv 2592 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5624, 55rexlimddv 2592 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5722rpred 9653 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ)
5857ltnrd 8031 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ¬ (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5956, 58pm2.65da 656 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ¬ 𝑥 # 𝑦)
60 apti 8541 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6112, 17, 60syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6259, 61mpbird 166 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 = 𝑦)
6362ex 114 . . 3 (𝜑 → ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6463alrimivv 1868 . 2 (𝜑 → ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
65 eleq1w 2231 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑦 ∈ (𝐹 lim 𝐵)))
6665mo4 2080 . 2 (∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6764, 66sylibr 133 1 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  ∃*wmo 2020  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121  {cpr 3584   class class class wbr 3989  ccom 4615  wf 5194  cfv 5198  (class class class)co 5853  cc 7772  cr 7773   < clt 7954  cmin 8090   # cap 8500   / cdiv 8589  2c2 8929  +crp 9610  abscabs 10961  t crest 12579  MetOpencmopn 12779   lim climc 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pm 6629  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-limced 13419
This theorem is referenced by:  dvfgg  13451
  Copyright terms: Public domain W3C validator