ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo GIF version

Theorem limcimo 14274
Description: Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcimo.b (𝜑𝐵 ∈ ℂ)
limcimo.bc (𝜑𝐵𝐶)
limcimo.bs (𝜑𝐵𝑆)
limcimo.c (𝜑𝐶 ∈ (𝐾t 𝑆))
limcimo.s (𝜑𝑆 ∈ {ℝ, ℂ})
limcimo.ca (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
limcflfcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
limcimo (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝐵,𝑞   𝐶,𝑞   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑞)   𝐴(𝑥,𝑞)   𝐶(𝑥)   𝑆(𝑥,𝑞)   𝐹(𝑞)   𝐾(𝑥,𝑞)

Proof of Theorem limcimo
Dummy variables 𝑒 𝑧 𝑓 𝑔 𝑤 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4009 . . . . . . . . . 10 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑧) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
21imbi2d 230 . . . . . . . . 9 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
32rexralbidv 2503 . . . . . . . 8 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
4 limcflf.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
5 limcflf.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℂ)
6 limcimo.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
74, 5, 6ellimc3ap 14270 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))))
87biimpa 296 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
98adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
109simprd 114 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
1110adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
129simpld 112 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ ℂ)
1312adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 ∈ ℂ)
144, 5, 6ellimc3ap 14270 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐹 lim 𝐵) ↔ (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))))
1514biimpa 296 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 lim 𝐵)) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1615adantrl 478 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1716simpld 112 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ ℂ)
1817adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑦 ∈ ℂ)
1913, 18subcld 8271 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) ∈ ℂ)
20 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 # 𝑦)
2113, 18, 20subap0d 8604 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) # 0)
2219, 21absrpclapd 11200 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ+)
2322rphalfcld 9712 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ((abs‘(𝑥𝑦)) / 2) ∈ ℝ+)
243, 11, 23rspcdva 2848 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
25 breq2 4009 . . . . . . . . . . . 12 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑤) − 𝑦)) < 𝑓 ↔ (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
2625imbi2d 230 . . . . . . . . . . 11 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2726rexralbidv 2503 . . . . . . . . . 10 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2816simprd 114 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
2928adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
3027, 29, 23rspcdva 2848 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
3130adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
324ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐹:𝐴⟶ℂ)
335ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐴 ⊆ ℂ)
346ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵 ∈ ℂ)
35 limcimo.bc . . . . . . . . . 10 (𝜑𝐵𝐶)
3635ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝐶)
37 limcimo.bs . . . . . . . . . 10 (𝜑𝐵𝑆)
3837ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝑆)
39 limcimo.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐾t 𝑆))
4039ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐶 ∈ (𝐾t 𝑆))
41 limcimo.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
4241ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑆 ∈ {ℝ, ℂ})
43 limcimo.ca . . . . . . . . . 10 (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
4443ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
45 limcflfcntop.k . . . . . . . . 9 𝐾 = (MetOpen‘(abs ∘ − ))
46 simplrl 535 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑑 ∈ ℝ+)
47 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ (𝐹 lim 𝐵))
4847ad3antrrr 492 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑥 ∈ (𝐹 lim 𝐵))
49 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ (𝐹 lim 𝐵))
5049ad3antrrr 492 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑦 ∈ (𝐹 lim 𝐵))
51 simplrr 536 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
52 simprl 529 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑔 ∈ ℝ+)
53 simprr 531 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 14273 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5531, 54rexlimddv 2599 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5624, 55rexlimddv 2599 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5722rpred 9699 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ)
5857ltnrd 8072 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ¬ (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5956, 58pm2.65da 661 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ¬ 𝑥 # 𝑦)
60 apti 8582 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6112, 17, 60syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6259, 61mpbird 167 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 = 𝑦)
6362ex 115 . . 3 (𝜑 → ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6463alrimivv 1875 . 2 (𝜑 → ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
65 eleq1w 2238 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑦 ∈ (𝐹 lim 𝐵)))
6665mo4 2087 . 2 (∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6764, 66sylibr 134 1 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  ∃*wmo 2027  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3131  {cpr 3595   class class class wbr 4005  ccom 4632  wf 5214  cfv 5218  (class class class)co 5878  cc 7812  cr 7813   < clt 7995  cmin 8131   # cap 8541   / cdiv 8632  2c2 8973  +crp 9656  abscabs 11009  t crest 12694  MetOpencmopn 13585   lim climc 14263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-map 6653  df-pm 6654  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-xneg 9775  df-xadd 9776  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-rest 12696  df-topgen 12715  df-psmet 13587  df-xmet 13588  df-met 13589  df-bl 13590  df-mopn 13591  df-top 13638  df-topon 13651  df-bases 13683  df-limced 14265
This theorem is referenced by:  dvfgg  14297
  Copyright terms: Public domain W3C validator