ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo GIF version

Theorem limcimo 12803
Description: Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcimo.b (𝜑𝐵 ∈ ℂ)
limcimo.bc (𝜑𝐵𝐶)
limcimo.bs (𝜑𝐵𝑆)
limcimo.c (𝜑𝐶 ∈ (𝐾t 𝑆))
limcimo.s (𝜑𝑆 ∈ {ℝ, ℂ})
limcimo.ca (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
limcflfcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
limcimo (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝐵,𝑞   𝐶,𝑞   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑞)   𝐴(𝑥,𝑞)   𝐶(𝑥)   𝑆(𝑥,𝑞)   𝐹(𝑞)   𝐾(𝑥,𝑞)

Proof of Theorem limcimo
Dummy variables 𝑒 𝑧 𝑓 𝑔 𝑤 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3933 . . . . . . . . . 10 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑧) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
21imbi2d 229 . . . . . . . . 9 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
32rexralbidv 2461 . . . . . . . 8 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
4 limcflf.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
5 limcflf.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℂ)
6 limcimo.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
74, 5, 6ellimc3ap 12799 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))))
87biimpa 294 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
98adantrr 470 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
109simprd 113 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
1110adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
129simpld 111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ ℂ)
1312adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 ∈ ℂ)
144, 5, 6ellimc3ap 12799 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐹 lim 𝐵) ↔ (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))))
1514biimpa 294 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 lim 𝐵)) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1615adantrl 469 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1716simpld 111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ ℂ)
1817adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑦 ∈ ℂ)
1913, 18subcld 8073 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) ∈ ℂ)
20 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 # 𝑦)
2113, 18, 20subap0d 8406 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) # 0)
2219, 21absrpclapd 10960 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ+)
2322rphalfcld 9496 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ((abs‘(𝑥𝑦)) / 2) ∈ ℝ+)
243, 11, 23rspcdva 2794 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
25 breq2 3933 . . . . . . . . . . . 12 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑤) − 𝑦)) < 𝑓 ↔ (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
2625imbi2d 229 . . . . . . . . . . 11 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2726rexralbidv 2461 . . . . . . . . . 10 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2816simprd 113 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
2928adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
3027, 29, 23rspcdva 2794 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
3130adantr 274 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
324ad4antr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐹:𝐴⟶ℂ)
335ad4antr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐴 ⊆ ℂ)
346ad4antr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵 ∈ ℂ)
35 limcimo.bc . . . . . . . . . 10 (𝜑𝐵𝐶)
3635ad4antr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝐶)
37 limcimo.bs . . . . . . . . . 10 (𝜑𝐵𝑆)
3837ad4antr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝑆)
39 limcimo.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐾t 𝑆))
4039ad4antr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐶 ∈ (𝐾t 𝑆))
41 limcimo.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
4241ad4antr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑆 ∈ {ℝ, ℂ})
43 limcimo.ca . . . . . . . . . 10 (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
4443ad4antr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
45 limcflfcntop.k . . . . . . . . 9 𝐾 = (MetOpen‘(abs ∘ − ))
46 simplrl 524 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑑 ∈ ℝ+)
47 simprl 520 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ (𝐹 lim 𝐵))
4847ad3antrrr 483 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑥 ∈ (𝐹 lim 𝐵))
49 simprr 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ (𝐹 lim 𝐵))
5049ad3antrrr 483 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑦 ∈ (𝐹 lim 𝐵))
51 simplrr 525 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
52 simprl 520 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑔 ∈ ℝ+)
53 simprr 521 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 12802 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5531, 54rexlimddv 2554 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5624, 55rexlimddv 2554 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5722rpred 9483 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ)
5857ltnrd 7875 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ¬ (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5956, 58pm2.65da 650 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ¬ 𝑥 # 𝑦)
60 apti 8384 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6112, 17, 60syl2anc 408 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6259, 61mpbird 166 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 = 𝑦)
6362ex 114 . . 3 (𝜑 → ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6463alrimivv 1847 . 2 (𝜑 → ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
65 eleq1w 2200 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑦 ∈ (𝐹 lim 𝐵)))
6665mo4 2060 . 2 (∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6764, 66sylibr 133 1 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wcel 1480  ∃*wmo 2000  wral 2416  wrex 2417  {crab 2420  wss 3071  {cpr 3528   class class class wbr 3929  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  cc 7618  cr 7619   < clt 7800  cmin 7933   # cap 8343   / cdiv 8432  2c2 8771  +crp 9441  abscabs 10769  t crest 12120  MetOpencmopn 12154   lim climc 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-limced 12794
This theorem is referenced by:  dvfgg  12826
  Copyright terms: Public domain W3C validator