ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo GIF version

Theorem limcimo 13274
Description: Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcimo.b (𝜑𝐵 ∈ ℂ)
limcimo.bc (𝜑𝐵𝐶)
limcimo.bs (𝜑𝐵𝑆)
limcimo.c (𝜑𝐶 ∈ (𝐾t 𝑆))
limcimo.s (𝜑𝑆 ∈ {ℝ, ℂ})
limcimo.ca (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
limcflfcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
limcimo (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝐵,𝑞   𝐶,𝑞   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑞)   𝐴(𝑥,𝑞)   𝐶(𝑥)   𝑆(𝑥,𝑞)   𝐹(𝑞)   𝐾(𝑥,𝑞)

Proof of Theorem limcimo
Dummy variables 𝑒 𝑧 𝑓 𝑔 𝑤 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3986 . . . . . . . . . 10 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑧) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
21imbi2d 229 . . . . . . . . 9 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
32rexralbidv 2492 . . . . . . . 8 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
4 limcflf.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
5 limcflf.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℂ)
6 limcimo.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
74, 5, 6ellimc3ap 13270 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))))
87biimpa 294 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
98adantrr 471 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
109simprd 113 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
1110adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
129simpld 111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ ℂ)
1312adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 ∈ ℂ)
144, 5, 6ellimc3ap 13270 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐹 lim 𝐵) ↔ (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))))
1514biimpa 294 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 lim 𝐵)) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1615adantrl 470 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1716simpld 111 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ ℂ)
1817adantr 274 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑦 ∈ ℂ)
1913, 18subcld 8209 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) ∈ ℂ)
20 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 # 𝑦)
2113, 18, 20subap0d 8542 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) # 0)
2219, 21absrpclapd 11130 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ+)
2322rphalfcld 9645 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ((abs‘(𝑥𝑦)) / 2) ∈ ℝ+)
243, 11, 23rspcdva 2835 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
25 breq2 3986 . . . . . . . . . . . 12 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑤) − 𝑦)) < 𝑓 ↔ (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
2625imbi2d 229 . . . . . . . . . . 11 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2726rexralbidv 2492 . . . . . . . . . 10 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2816simprd 113 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
2928adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
3027, 29, 23rspcdva 2835 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
3130adantr 274 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
324ad4antr 486 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐹:𝐴⟶ℂ)
335ad4antr 486 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐴 ⊆ ℂ)
346ad4antr 486 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵 ∈ ℂ)
35 limcimo.bc . . . . . . . . . 10 (𝜑𝐵𝐶)
3635ad4antr 486 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝐶)
37 limcimo.bs . . . . . . . . . 10 (𝜑𝐵𝑆)
3837ad4antr 486 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝑆)
39 limcimo.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐾t 𝑆))
4039ad4antr 486 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐶 ∈ (𝐾t 𝑆))
41 limcimo.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
4241ad4antr 486 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑆 ∈ {ℝ, ℂ})
43 limcimo.ca . . . . . . . . . 10 (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
4443ad4antr 486 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
45 limcflfcntop.k . . . . . . . . 9 𝐾 = (MetOpen‘(abs ∘ − ))
46 simplrl 525 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑑 ∈ ℝ+)
47 simprl 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ (𝐹 lim 𝐵))
4847ad3antrrr 484 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑥 ∈ (𝐹 lim 𝐵))
49 simprr 522 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ (𝐹 lim 𝐵))
5049ad3antrrr 484 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑦 ∈ (𝐹 lim 𝐵))
51 simplrr 526 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
52 simprl 521 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑔 ∈ ℝ+)
53 simprr 522 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 13273 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5531, 54rexlimddv 2588 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5624, 55rexlimddv 2588 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5722rpred 9632 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ)
5857ltnrd 8010 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ¬ (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5956, 58pm2.65da 651 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ¬ 𝑥 # 𝑦)
60 apti 8520 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6112, 17, 60syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6259, 61mpbird 166 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 = 𝑦)
6362ex 114 . . 3 (𝜑 → ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6463alrimivv 1863 . 2 (𝜑 → ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
65 eleq1w 2227 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑦 ∈ (𝐹 lim 𝐵)))
6665mo4 2075 . 2 (∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6764, 66sylibr 133 1 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  ∃*wmo 2015  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116  {cpr 3577   class class class wbr 3982  ccom 4608  wf 5184  cfv 5188  (class class class)co 5842  cc 7751  cr 7752   < clt 7933  cmin 8069   # cap 8479   / cdiv 8568  2c2 8908  +crp 9589  abscabs 10939  t crest 12556  MetOpencmopn 12625   lim climc 13263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pm 6617  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-limced 13265
This theorem is referenced by:  dvfgg  13297
  Copyright terms: Public domain W3C validator