ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimo GIF version

Theorem limcimo 15137
Description: Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcimo.b (𝜑𝐵 ∈ ℂ)
limcimo.bc (𝜑𝐵𝐶)
limcimo.bs (𝜑𝐵𝑆)
limcimo.c (𝜑𝐶 ∈ (𝐾t 𝑆))
limcimo.s (𝜑𝑆 ∈ {ℝ, ℂ})
limcimo.ca (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
limcflfcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
limcimo (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Distinct variable groups:   𝑥,𝐵   𝐵,𝑞   𝐶,𝑞   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑞)   𝐴(𝑥,𝑞)   𝐶(𝑥)   𝑆(𝑥,𝑞)   𝐹(𝑞)   𝐾(𝑥,𝑞)

Proof of Theorem limcimo
Dummy variables 𝑒 𝑧 𝑓 𝑔 𝑤 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4048 . . . . . . . . . 10 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑧) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
21imbi2d 230 . . . . . . . . 9 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
32rexralbidv 2532 . . . . . . . 8 (𝑒 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2))))
4 limcflf.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
5 limcflf.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℂ)
6 limcimo.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
74, 5, 6ellimc3ap 15133 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))))
87biimpa 296 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
98adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒)))
109simprd 114 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
1110adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < 𝑒))
129simpld 112 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ ℂ)
1312adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 ∈ ℂ)
144, 5, 6ellimc3ap 15133 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐹 lim 𝐵) ↔ (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))))
1514biimpa 296 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 lim 𝐵)) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1615adantrl 478 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑦 ∈ ℂ ∧ ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓)))
1716simpld 112 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ ℂ)
1817adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑦 ∈ ℂ)
1913, 18subcld 8383 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) ∈ ℂ)
20 simpr 110 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → 𝑥 # 𝑦)
2113, 18, 20subap0d 8717 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (𝑥𝑦) # 0)
2219, 21absrpclapd 11499 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ+)
2322rphalfcld 9831 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ((abs‘(𝑥𝑦)) / 2) ∈ ℝ+)
243, 11, 23rspcdva 2882 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
25 breq2 4048 . . . . . . . . . . . 12 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → ((abs‘((𝐹𝑤) − 𝑦)) < 𝑓 ↔ (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
2625imbi2d 230 . . . . . . . . . . 11 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2726rexralbidv 2532 . . . . . . . . . 10 (𝑓 = ((abs‘(𝑥𝑦)) / 2) → (∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2))))
2816simprd 114 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
2928adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∀𝑓 ∈ ℝ+𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < 𝑓))
3027, 29, 23rspcdva 2882 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
3130adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → ∃𝑔 ∈ ℝ+𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
324ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐹:𝐴⟶ℂ)
335ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐴 ⊆ ℂ)
346ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵 ∈ ℂ)
35 limcimo.bc . . . . . . . . . 10 (𝜑𝐵𝐶)
3635ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝐶)
37 limcimo.bs . . . . . . . . . 10 (𝜑𝐵𝑆)
3837ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐵𝑆)
39 limcimo.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐾t 𝑆))
4039ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝐶 ∈ (𝐾t 𝑆))
41 limcimo.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
4241ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑆 ∈ {ℝ, ℂ})
43 limcimo.ca . . . . . . . . . 10 (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
4443ad4antr 494 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
45 limcflfcntop.k . . . . . . . . 9 𝐾 = (MetOpen‘(abs ∘ − ))
46 simplrl 535 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑑 ∈ ℝ+)
47 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 ∈ (𝐹 lim 𝐵))
4847ad3antrrr 492 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑥 ∈ (𝐹 lim 𝐵))
49 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑦 ∈ (𝐹 lim 𝐵))
5049ad3antrrr 492 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑦 ∈ (𝐹 lim 𝐵))
51 simplrr 536 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))
52 simprl 529 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → 𝑔 ∈ ℝ+)
53 simprr 531 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))
5432, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 53limcimolemlt 15136 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝑔) → (abs‘((𝐹𝑤) − 𝑦)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5531, 54rexlimddv 2628 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑥)) < ((abs‘(𝑥𝑦)) / 2)))) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5624, 55rexlimddv 2628 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5722rpred 9818 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → (abs‘(𝑥𝑦)) ∈ ℝ)
5857ltnrd 8184 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) ∧ 𝑥 # 𝑦) → ¬ (abs‘(𝑥𝑦)) < (abs‘(𝑥𝑦)))
5956, 58pm2.65da 663 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → ¬ 𝑥 # 𝑦)
60 apti 8695 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6112, 17, 60syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
6259, 61mpbird 167 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵))) → 𝑥 = 𝑦)
6362ex 115 . . 3 (𝜑 → ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6463alrimivv 1898 . 2 (𝜑 → ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
65 eleq1w 2266 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑦 ∈ (𝐹 lim 𝐵)))
6665mo4 2115 . 2 (∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑦 ∈ (𝐹 lim 𝐵)) → 𝑥 = 𝑦))
6764, 66sylibr 134 1 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  ∃*wmo 2055  wcel 2176  wral 2484  wrex 2485  {crab 2488  wss 3166  {cpr 3634   class class class wbr 4044  ccom 4679  wf 5267  cfv 5271  (class class class)co 5944  cc 7923  cr 7924   < clt 8107  cmin 8243   # cap 8654   / cdiv 8745  2c2 9087  +crp 9775  abscabs 11308  t crest 13071  MetOpencmopn 14303   lim climc 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-pm 6738  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-limced 15128
This theorem is referenced by:  dvfgg  15160
  Copyright terms: Public domain W3C validator