![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oprabexd | GIF version |
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
oprabexd.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
oprabexd.2 | ⊢ (𝜑 → 𝐵 ∈ V) |
oprabexd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) |
oprabexd.4 | ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) |
Ref | Expression |
---|---|
oprabexd | ⊢ (𝜑 → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabexd.4 | . 2 ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) | |
2 | oprabexd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) | |
3 | 2 | ex 115 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜓)) |
4 | moanimv 2117 | . . . . . 6 ⊢ (∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜓)) | |
5 | 3, 4 | sylibr 134 | . . . . 5 ⊢ (𝜑 → ∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)) |
6 | 5 | alrimivv 1886 | . . . 4 ⊢ (𝜑 → ∀𝑥∀𝑦∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)) |
7 | funoprabg 6017 | . . . 4 ⊢ (∀𝑥∀𝑦∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) |
9 | dmoprabss 6000 | . . . 4 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) | |
10 | oprabexd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | |
11 | oprabexd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) | |
12 | xpexg 4773 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
13 | 10, 11, 12 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
14 | ssexg 4168 | . . . 4 ⊢ ((dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V) → dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) | |
15 | 9, 13, 14 | sylancr 414 | . . 3 ⊢ (𝜑 → dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) |
16 | funex 5781 | . . 3 ⊢ ((Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∧ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) | |
17 | 8, 15, 16 | syl2anc 411 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) |
18 | 1, 17 | eqeltrd 2270 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃*wmo 2043 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 × cxp 4657 dom cdm 4659 Fun wfun 5248 {coprab 5919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-oprab 5922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |