ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabexd GIF version

Theorem oprabexd 6184
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
oprabexd.1 (𝜑𝐴 ∈ V)
oprabexd.2 (𝜑𝐵 ∈ V)
oprabexd.3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)
oprabexd.4 (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
Assertion
Ref Expression
oprabexd (𝜑𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem oprabexd
StepHypRef Expression
1 oprabexd.4 . 2 (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
2 oprabexd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)
32ex 115 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜓))
4 moanimv 2120 . . . . . 6 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜓))
53, 4sylibr 134 . . . . 5 (𝜑 → ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓))
65alrimivv 1889 . . . 4 (𝜑 → ∀𝑥𝑦∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓))
7 funoprabg 6021 . . . 4 (∀𝑥𝑦∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
86, 7syl 14 . . 3 (𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
9 dmoprabss 6004 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵)
10 oprabexd.1 . . . . 5 (𝜑𝐴 ∈ V)
11 oprabexd.2 . . . . 5 (𝜑𝐵 ∈ V)
12 xpexg 4777 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V)
1310, 11, 12syl2anc 411 . . . 4 (𝜑 → (𝐴 × 𝐵) ∈ V)
14 ssexg 4172 . . . 4 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
159, 13, 14sylancr 414 . . 3 (𝜑 → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
16 funex 5785 . . 3 ((Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
178, 15, 16syl2anc 411 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
181, 17eqeltrd 2273 1 (𝜑𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  ∃*wmo 2046  wcel 2167  Vcvv 2763  wss 3157   × cxp 4661  dom cdm 4663  Fun wfun 5252  {coprab 5923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-oprab 5926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator