| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabexd | GIF version | ||
| Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| oprabexd.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
| oprabexd.2 | ⊢ (𝜑 → 𝐵 ∈ V) |
| oprabexd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) |
| oprabexd.4 | ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) |
| Ref | Expression |
|---|---|
| oprabexd | ⊢ (𝜑 → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabexd.4 | . 2 ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) | |
| 2 | oprabexd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) | |
| 3 | 2 | ex 115 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜓)) |
| 4 | moanimv 2130 | . . . . . 6 ⊢ (∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜓)) | |
| 5 | 3, 4 | sylibr 134 | . . . . 5 ⊢ (𝜑 → ∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)) |
| 6 | 5 | alrimivv 1899 | . . . 4 ⊢ (𝜑 → ∀𝑥∀𝑦∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)) |
| 7 | funoprabg 6057 | . . . 4 ⊢ (∀𝑥∀𝑦∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) |
| 9 | dmoprabss 6040 | . . . 4 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) | |
| 10 | oprabexd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 11 | oprabexd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 12 | xpexg 4797 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 13 | 10, 11, 12 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 14 | ssexg 4191 | . . . 4 ⊢ ((dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V) → dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) | |
| 15 | 9, 13, 14 | sylancr 414 | . . 3 ⊢ (𝜑 → dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) |
| 16 | funex 5820 | . . 3 ⊢ ((Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∧ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) | |
| 17 | 8, 15, 16 | syl2anc 411 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) |
| 18 | 1, 17 | eqeltrd 2283 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∃*wmo 2056 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 × cxp 4681 dom cdm 4683 Fun wfun 5274 {coprab 5958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-oprab 5961 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |