![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabex | GIF version |
Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.) |
Ref | Expression |
---|---|
opabex.1 | ⊢ 𝐴 ∈ V |
opabex.2 | ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) |
Ref | Expression |
---|---|
opabex | ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 5265 | . . 3 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | opabex.2 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) | |
3 | moanimv 2112 | . . . 4 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
4 | 2, 3 | mpbir 146 | . . 3 ⊢ ∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
5 | 1, 4 | mpgbir 1463 | . 2 ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
6 | opabex.1 | . . 3 ⊢ 𝐴 ∈ V | |
7 | dmopabss 4853 | . . 3 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
8 | 6, 7 | ssexi 4155 | . 2 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
9 | funex 5754 | . 2 ⊢ ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
10 | 5, 8, 9 | mp2an 426 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃*wmo 2038 ∈ wcel 2159 Vcvv 2751 {copab 4077 dom cdm 4640 Fun wfun 5224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-pow 4188 ax-pr 4223 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-reu 2474 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |