![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > th3qcor | GIF version |
Description: Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
Ref | Expression |
---|---|
th3q.1 | ⊢ ∼ ∈ V |
th3q.2 | ⊢ ∼ Er (𝑆 × 𝑆) |
th3q.4 | ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩))) |
th3q.5 | ⊢ 𝐺 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ))} |
Ref | Expression |
---|---|
th3qcor | ⊢ Fun 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | th3q.1 | . . . . 5 ⊢ ∼ ∈ V | |
2 | th3q.2 | . . . . 5 ⊢ ∼ Er (𝑆 × 𝑆) | |
3 | th3q.4 | . . . . 5 ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩))) | |
4 | 1, 2, 3 | th3qlem2 6640 | . . . 4 ⊢ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) |
5 | moanimv 2101 | . . . 4 ⊢ (∃*𝑧((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) ↔ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ))) | |
6 | 4, 5 | mpbir 146 | . . 3 ⊢ ∃*𝑧((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) |
7 | 6 | funoprab 5977 | . 2 ⊢ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ))} |
8 | th3q.5 | . . 3 ⊢ 𝐺 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ))} | |
9 | 8 | funeqi 5239 | . 2 ⊢ (Fun 𝐺 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝑦 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ))}) |
10 | 7, 9 | mpbir 146 | 1 ⊢ Fun 𝐺 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∃*wmo 2027 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 class class class wbr 4005 × cxp 4626 Fun wfun 5212 (class class class)co 5877 {coprab 5878 Er wer 6534 [cec 6535 / cqs 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-er 6537 df-ec 6539 df-qs 6543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |