ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopabg GIF version

Theorem fnopabg 5321
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fnopabg.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fnopabg (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fnopabg
StepHypRef Expression
1 moanimv 2094 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
21albii 1463 . . . . 5 (∀𝑥∃*𝑦(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
3 funopab 5233 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
4 df-ral 2453 . . . . 5 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
52, 3, 43bitr4ri 212 . . . 4 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
6 dmopab3 4824 . . . 4 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
75, 6anbi12i 457 . . 3 ((∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
8 r19.26 2596 . . 3 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑))
9 df-fn 5201 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
107, 8, 93bitr4i 211 . 2 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
11 eu5 2066 . . . 4 (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑))
12 ancom 264 . . . 4 ((∃𝑦𝜑 ∧ ∃*𝑦𝜑) ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
1311, 12bitri 183 . . 3 (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
1413ralbii 2476 . 2 (∀𝑥𝐴 ∃!𝑦𝜑 ↔ ∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
15 fnopabg.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
1615fneq1i 5292 . 2 (𝐹 Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
1710, 14, 163bitr4i 211 1 (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wex 1485  ∃!weu 2019  ∃*wmo 2020  wcel 2141  wral 2448  {copab 4049  dom cdm 4611  Fun wfun 5192   Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-fun 5200  df-fn 5201
This theorem is referenced by:  fnopab  5322  mptfng  5323
  Copyright terms: Public domain W3C validator