ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopabg GIF version

Theorem fnopabg 5377
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fnopabg.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fnopabg (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fnopabg
StepHypRef Expression
1 moanimv 2117 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
21albii 1481 . . . . 5 (∀𝑥∃*𝑦(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
3 funopab 5289 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
4 df-ral 2477 . . . . 5 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
52, 3, 43bitr4ri 213 . . . 4 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
6 dmopab3 4875 . . . 4 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
75, 6anbi12i 460 . . 3 ((∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
8 r19.26 2620 . . 3 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑))
9 df-fn 5257 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
107, 8, 93bitr4i 212 . 2 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
11 eu5 2089 . . . 4 (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑))
12 ancom 266 . . . 4 ((∃𝑦𝜑 ∧ ∃*𝑦𝜑) ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
1311, 12bitri 184 . . 3 (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
1413ralbii 2500 . 2 (∀𝑥𝐴 ∃!𝑦𝜑 ↔ ∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
15 fnopabg.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
1615fneq1i 5348 . 2 (𝐹 Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
1710, 14, 163bitr4i 212 1 (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  ∃!weu 2042  ∃*wmo 2043  wcel 2164  wral 2472  {copab 4089  dom cdm 4659  Fun wfun 5248   Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-fun 5256  df-fn 5257
This theorem is referenced by:  fnopab  5378  mptfng  5379  uchoice  6190
  Copyright terms: Public domain W3C validator