Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnopabg | GIF version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
fnopabg.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Ref | Expression |
---|---|
fnopabg | ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moanimv 2081 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
2 | 1 | albii 1450 | . . . . 5 ⊢ (∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) |
3 | funopab 5202 | . . . . 5 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-ral 2440 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
5 | 2, 3, 4 | 3bitr4ri 212 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
6 | dmopab3 4796 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | |
7 | 5, 6 | anbi12i 456 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) |
8 | r19.26 2583 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑)) | |
9 | df-fn 5170 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) | |
10 | 7, 8, 9 | 3bitr4i 211 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
11 | eu5 2053 | . . . 4 ⊢ (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑)) | |
12 | ancom 264 | . . . 4 ⊢ ((∃𝑦𝜑 ∧ ∃*𝑦𝜑) ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) | |
13 | 11, 12 | bitri 183 | . . 3 ⊢ (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) |
14 | 13 | ralbii 2463 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) |
15 | fnopabg.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
16 | 15 | fneq1i 5261 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
17 | 10, 14, 16 | 3bitr4i 211 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1333 = wceq 1335 ∃wex 1472 ∃!weu 2006 ∃*wmo 2007 ∈ wcel 2128 ∀wral 2435 {copab 4024 dom cdm 4583 Fun wfun 5161 Fn wfn 5162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-fun 5169 df-fn 5170 |
This theorem is referenced by: fnopab 5291 mptfng 5292 |
Copyright terms: Public domain | W3C validator |