| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fnopabg | GIF version | ||
| Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| fnopabg.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | 
| Ref | Expression | 
|---|---|
| fnopabg | ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | moanimv 2120 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
| 2 | 1 | albii 1484 | . . . . 5 ⊢ (∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | 
| 3 | funopab 5293 | . . . . 5 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-ral 2480 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
| 5 | 2, 3, 4 | 3bitr4ri 213 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | 
| 6 | dmopab3 4879 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | |
| 7 | 5, 6 | anbi12i 460 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) | 
| 8 | r19.26 2623 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑)) | |
| 9 | df-fn 5261 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) | |
| 10 | 7, 8, 9 | 3bitr4i 212 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) | 
| 11 | eu5 2092 | . . . 4 ⊢ (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑)) | |
| 12 | ancom 266 | . . . 4 ⊢ ((∃𝑦𝜑 ∧ ∃*𝑦𝜑) ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) | |
| 13 | 11, 12 | bitri 184 | . . 3 ⊢ (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) | 
| 14 | 13 | ralbii 2503 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) | 
| 15 | fnopabg.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 16 | 15 | fneq1i 5352 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) | 
| 17 | 10, 14, 16 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 ∈ wcel 2167 ∀wral 2475 {copab 4093 dom cdm 4663 Fun wfun 5252 Fn wfn 5253 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-fun 5260 df-fn 5261 | 
| This theorem is referenced by: fnopab 5382 mptfng 5383 uchoice 6195 | 
| Copyright terms: Public domain | W3C validator |