ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1st GIF version

Theorem cnmpt1st 14608
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
cnmpt1st (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo1st 6224 . . . . . 6 1st :V–onto→V
2 fofn 5485 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 ssv 3206 . . . . 5 (𝑋 × 𝑌) ⊆ V
5 fnssres 5374 . . . . 5 ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
63, 4, 5mp2an 426 . . . 4 (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
7 dffn5im 5609 . . . 4 ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)))
86, 7ax-mp 5 . . 3 (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))
9 fvres 5585 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st𝑧))
109mpteq2ia 4120 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧))
11 vex 2766 . . . . 5 𝑥 ∈ V
12 vex 2766 . . . . 5 𝑦 ∈ V
1311, 12op1std 6215 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1413mpompt 6018 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧)) = (𝑥𝑋, 𝑦𝑌𝑥)
158, 10, 143eqtri 2221 . 2 (1st ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝑥)
16 cnmpt21.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
17 cnmpt21.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
18 tx1cn 14589 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1916, 17, 18syl2anc 411 . 2 (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
2015, 19eqeltrrid 2284 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  cmpt 4095   × cxp 4662  cres 4666   Fn wfn 5254  ontowfo 5257  cfv 5259  (class class class)co 5925  cmpo 5927  1st c1st 6205  TopOnctopon 14330   Cn ccn 14505   ×t ctx 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-topgen 12962  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508  df-tx 14573
This theorem is referenced by:  cnmptcom  14618  txhmeo  14639  txswaphmeo  14641  divcnap  14885  cnrehmeocntop  14930
  Copyright terms: Public domain W3C validator