![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmpt1st | GIF version |
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
Ref | Expression |
---|---|
cnmpt1st | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 6212 | . . . . . 6 ⊢ 1st :V–onto→V | |
2 | fofn 5479 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
4 | ssv 3202 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
5 | fnssres 5368 | . . . . 5 ⊢ ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
6 | 3, 4, 5 | mp2an 426 | . . . 4 ⊢ (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
7 | dffn5im 5603 | . . . 4 ⊢ ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) |
9 | fvres 5579 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st ‘𝑧)) | |
10 | 9 | mpteq2ia 4116 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) |
11 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | op1std 6203 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
14 | 13 | mpompt 6011 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
15 | 8, 10, 14 | 3eqtri 2218 | . 2 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
18 | tx1cn 14448 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | |
19 | 16, 17, 18 | syl2anc 411 | . 2 ⊢ (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
20 | 15, 19 | eqeltrrid 2281 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 ↦ cmpt 4091 × cxp 4658 ↾ cres 4662 Fn wfn 5250 –onto→wfo 5253 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 1st c1st 6193 TopOnctopon 14189 Cn ccn 14364 ×t ctx 14431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-map 6706 df-topgen 12874 df-top 14177 df-topon 14190 df-bases 14222 df-cn 14367 df-tx 14432 |
This theorem is referenced by: cnmptcom 14477 txhmeo 14498 txswaphmeo 14500 divcnap 14744 cnrehmeocntop 14789 |
Copyright terms: Public domain | W3C validator |