ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrecnv GIF version

Theorem cnrecnv 11057
Description: The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 9719. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnrecnv 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Distinct variable groups:   𝑧,𝐹   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
21cnref1o 9719 . . . . . 6 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
3 f1ocnv 5514 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:ℂ–1-1-onto→(ℝ × ℝ))
4 f1of 5501 . . . . . 6 (𝐹:ℂ–1-1-onto→(ℝ × ℝ) → 𝐹:ℂ⟶(ℝ × ℝ))
52, 3, 4mp2b 8 . . . . 5 𝐹:ℂ⟶(ℝ × ℝ)
65a1i 9 . . . 4 (⊤ → 𝐹:ℂ⟶(ℝ × ℝ))
76feqmptd 5611 . . 3 (⊤ → 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
87mptru 1373 . 2 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧))
9 df-ov 5922 . . . . . . 7 ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
10 recl 11000 . . . . . . . 8 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ)
11 imcl 11001 . . . . . . . 8 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ)
1210recnd 8050 . . . . . . . . 9 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℂ)
13 ax-icn 7969 . . . . . . . . . . 11 i ∈ ℂ
1413a1i 9 . . . . . . . . . 10 (𝑧 ∈ ℂ → i ∈ ℂ)
1511recnd 8050 . . . . . . . . . 10 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℂ)
1614, 15mulcld 8042 . . . . . . . . 9 (𝑧 ∈ ℂ → (i · (ℑ‘𝑧)) ∈ ℂ)
1712, 16addcld 8041 . . . . . . . 8 (𝑧 ∈ ℂ → ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ)
18 oveq1 5926 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦)))
19 oveq2 5927 . . . . . . . . . 10 (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧)))
2019oveq2d 5935 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2118, 20, 1ovmpog 6054 . . . . . . . 8 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ ∧ ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2210, 11, 17, 21syl3anc 1249 . . . . . . 7 (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
239, 22eqtr3id 2240 . . . . . 6 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
24 replim 11006 . . . . . 6 (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2523, 24eqtr4d 2229 . . . . 5 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = 𝑧)
2625fveq2d 5559 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = (𝐹𝑧))
27 opelxpi 4692 . . . . . 6 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
2810, 11, 27syl2anc 411 . . . . 5 (𝑧 ∈ ℂ → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
29 f1ocnvfv1 5821 . . . . 5 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ)) → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
302, 28, 29sylancr 414 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
3126, 30eqtr3d 2228 . . 3 (𝑧 ∈ ℂ → (𝐹𝑧) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
3231mpteq2ia 4116 . 2 (𝑧 ∈ ℂ ↦ (𝐹𝑧)) = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
338, 32eqtri 2214 1 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wtru 1365  wcel 2164  cop 3622  cmpt 4091   × cxp 4658  ccnv 4659  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  cmpo 5921  cc 7872  cr 7873  ici 7876   + caddc 7877   · cmul 7879  cre 10987  cim 10988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-2 9043  df-cj 10989  df-re 10990  df-im 10991
This theorem is referenced by:  cnrehmeocntop  14789
  Copyright terms: Public domain W3C validator