ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrecnv GIF version

Theorem cnrecnv 11336
Description: The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 9807. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnrecnv 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Distinct variable groups:   𝑧,𝐹   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
21cnref1o 9807 . . . . . 6 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
3 f1ocnv 5557 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:ℂ–1-1-onto→(ℝ × ℝ))
4 f1of 5544 . . . . . 6 (𝐹:ℂ–1-1-onto→(ℝ × ℝ) → 𝐹:ℂ⟶(ℝ × ℝ))
52, 3, 4mp2b 8 . . . . 5 𝐹:ℂ⟶(ℝ × ℝ)
65a1i 9 . . . 4 (⊤ → 𝐹:ℂ⟶(ℝ × ℝ))
76feqmptd 5655 . . 3 (⊤ → 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
87mptru 1382 . 2 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧))
9 df-ov 5970 . . . . . . 7 ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
10 recl 11279 . . . . . . . 8 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ)
11 imcl 11280 . . . . . . . 8 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ)
1210recnd 8136 . . . . . . . . 9 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℂ)
13 ax-icn 8055 . . . . . . . . . . 11 i ∈ ℂ
1413a1i 9 . . . . . . . . . 10 (𝑧 ∈ ℂ → i ∈ ℂ)
1511recnd 8136 . . . . . . . . . 10 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℂ)
1614, 15mulcld 8128 . . . . . . . . 9 (𝑧 ∈ ℂ → (i · (ℑ‘𝑧)) ∈ ℂ)
1712, 16addcld 8127 . . . . . . . 8 (𝑧 ∈ ℂ → ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ)
18 oveq1 5974 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦)))
19 oveq2 5975 . . . . . . . . . 10 (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧)))
2019oveq2d 5983 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2118, 20, 1ovmpog 6103 . . . . . . . 8 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ ∧ ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2210, 11, 17, 21syl3anc 1250 . . . . . . 7 (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
239, 22eqtr3id 2254 . . . . . 6 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
24 replim 11285 . . . . . 6 (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2523, 24eqtr4d 2243 . . . . 5 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = 𝑧)
2625fveq2d 5603 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = (𝐹𝑧))
27 opelxpi 4725 . . . . . 6 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
2810, 11, 27syl2anc 411 . . . . 5 (𝑧 ∈ ℂ → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
29 f1ocnvfv1 5869 . . . . 5 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ)) → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
302, 28, 29sylancr 414 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
3126, 30eqtr3d 2242 . . 3 (𝑧 ∈ ℂ → (𝐹𝑧) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
3231mpteq2ia 4146 . 2 (𝑧 ∈ ℂ ↦ (𝐹𝑧)) = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
338, 32eqtri 2228 1 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wtru 1374  wcel 2178  cop 3646  cmpt 4121   × cxp 4691  ccnv 4692  wf 5286  1-1-ontowf1o 5289  cfv 5290  (class class class)co 5967  cmpo 5969  cc 7958  cr 7959  ici 7962   + caddc 7963   · cmul 7965  cre 11266  cim 11267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-2 9130  df-cj 11268  df-re 11269  df-im 11270
This theorem is referenced by:  cnrehmeocntop  15197
  Copyright terms: Public domain W3C validator