![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnrecnv | GIF version |
Description: The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 9664. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cnrecnv.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
Ref | Expression |
---|---|
cnrecnv | ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrecnv.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | 1 | cnref1o 9664 | . . . . . 6 ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→ℂ |
3 | f1ocnv 5486 | . . . . . 6 ⊢ (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → ◡𝐹:ℂ–1-1-onto→(ℝ × ℝ)) | |
4 | f1of 5473 | . . . . . 6 ⊢ (◡𝐹:ℂ–1-1-onto→(ℝ × ℝ) → ◡𝐹:ℂ⟶(ℝ × ℝ)) | |
5 | 2, 3, 4 | mp2b 8 | . . . . 5 ⊢ ◡𝐹:ℂ⟶(ℝ × ℝ) |
6 | 5 | a1i 9 | . . . 4 ⊢ (⊤ → ◡𝐹:ℂ⟶(ℝ × ℝ)) |
7 | 6 | feqmptd 5582 | . . 3 ⊢ (⊤ → ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧))) |
8 | 7 | mptru 1372 | . 2 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) |
9 | df-ov 5891 | . . . . . . 7 ⊢ ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | |
10 | recl 10876 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ) | |
11 | imcl 10877 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ) | |
12 | 10 | recnd 8000 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℂ) |
13 | ax-icn 7920 | . . . . . . . . . . 11 ⊢ i ∈ ℂ | |
14 | 13 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℂ → i ∈ ℂ) |
15 | 11 | recnd 8000 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℂ) |
16 | 14, 15 | mulcld 7992 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℂ → (i · (ℑ‘𝑧)) ∈ ℂ) |
17 | 12, 16 | addcld 7991 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ) |
18 | oveq1 5895 | . . . . . . . . 9 ⊢ (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦))) | |
19 | oveq2 5896 | . . . . . . . . . 10 ⊢ (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧))) | |
20 | 19 | oveq2d 5904 | . . . . . . . . 9 ⊢ (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
21 | 18, 20, 1 | ovmpog 6023 | . . . . . . . 8 ⊢ (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ ∧ ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
22 | 10, 11, 17, 21 | syl3anc 1248 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
23 | 9, 22 | eqtr3id 2234 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
24 | replim 10882 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) | |
25 | 23, 24 | eqtr4d 2223 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) = 𝑧) |
26 | 25 | fveq2d 5531 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = (◡𝐹‘𝑧)) |
27 | opelxpi 4670 | . . . . . 6 ⊢ (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) | |
28 | 10, 11, 27 | syl2anc 411 | . . . . 5 ⊢ (𝑧 ∈ ℂ → 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) |
29 | f1ocnvfv1 5791 | . . . . 5 ⊢ ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | |
30 | 2, 28, 29 | sylancr 414 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
31 | 26, 30 | eqtr3d 2222 | . . 3 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘𝑧) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
32 | 31 | mpteq2ia 4101 | . 2 ⊢ (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
33 | 8, 32 | eqtri 2208 | 1 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ⊤wtru 1364 ∈ wcel 2158 〈cop 3607 ↦ cmpt 4076 × cxp 4636 ◡ccnv 4637 ⟶wf 5224 –1-1-onto→wf1o 5227 ‘cfv 5228 (class class class)co 5888 ∈ cmpo 5890 ℂcc 7823 ℝcr 7824 ici 7827 + caddc 7828 · cmul 7830 ℜcre 10863 ℑcim 10864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-po 4308 df-iso 4309 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-2 8992 df-cj 10865 df-re 10866 df-im 10867 |
This theorem is referenced by: cnrehmeocntop 14389 |
Copyright terms: Public domain | W3C validator |