| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnrecnv | GIF version | ||
| Description: The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 9807. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cnrecnv.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
| Ref | Expression |
|---|---|
| cnrecnv | ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrecnv.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
| 2 | 1 | cnref1o 9807 | . . . . . 6 ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→ℂ |
| 3 | f1ocnv 5557 | . . . . . 6 ⊢ (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → ◡𝐹:ℂ–1-1-onto→(ℝ × ℝ)) | |
| 4 | f1of 5544 | . . . . . 6 ⊢ (◡𝐹:ℂ–1-1-onto→(ℝ × ℝ) → ◡𝐹:ℂ⟶(ℝ × ℝ)) | |
| 5 | 2, 3, 4 | mp2b 8 | . . . . 5 ⊢ ◡𝐹:ℂ⟶(ℝ × ℝ) |
| 6 | 5 | a1i 9 | . . . 4 ⊢ (⊤ → ◡𝐹:ℂ⟶(ℝ × ℝ)) |
| 7 | 6 | feqmptd 5655 | . . 3 ⊢ (⊤ → ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧))) |
| 8 | 7 | mptru 1382 | . 2 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) |
| 9 | df-ov 5970 | . . . . . . 7 ⊢ ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | |
| 10 | recl 11279 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ) | |
| 11 | imcl 11280 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ) | |
| 12 | 10 | recnd 8136 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℂ) |
| 13 | ax-icn 8055 | . . . . . . . . . . 11 ⊢ i ∈ ℂ | |
| 14 | 13 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℂ → i ∈ ℂ) |
| 15 | 11 | recnd 8136 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℂ) |
| 16 | 14, 15 | mulcld 8128 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℂ → (i · (ℑ‘𝑧)) ∈ ℂ) |
| 17 | 12, 16 | addcld 8127 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ) |
| 18 | oveq1 5974 | . . . . . . . . 9 ⊢ (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦))) | |
| 19 | oveq2 5975 | . . . . . . . . . 10 ⊢ (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧))) | |
| 20 | 19 | oveq2d 5983 | . . . . . . . . 9 ⊢ (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
| 21 | 18, 20, 1 | ovmpog 6103 | . . . . . . . 8 ⊢ (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ ∧ ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
| 22 | 10, 11, 17, 21 | syl3anc 1250 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
| 23 | 9, 22 | eqtr3id 2254 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
| 24 | replim 11285 | . . . . . 6 ⊢ (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) | |
| 25 | 23, 24 | eqtr4d 2243 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉) = 𝑧) |
| 26 | 25 | fveq2d 5603 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = (◡𝐹‘𝑧)) |
| 27 | opelxpi 4725 | . . . . . 6 ⊢ (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) | |
| 28 | 10, 11, 27 | syl2anc 411 | . . . . 5 ⊢ (𝑧 ∈ ℂ → 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) |
| 29 | f1ocnvfv1 5869 | . . . . 5 ⊢ ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉 ∈ (ℝ × ℝ)) → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | |
| 30 | 2, 28, 29 | sylancr 414 | . . . 4 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘(𝐹‘〈(ℜ‘𝑧), (ℑ‘𝑧)〉)) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| 31 | 26, 30 | eqtr3d 2242 | . . 3 ⊢ (𝑧 ∈ ℂ → (◡𝐹‘𝑧) = 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| 32 | 31 | mpteq2ia 4146 | . 2 ⊢ (𝑧 ∈ ℂ ↦ (◡𝐹‘𝑧)) = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| 33 | 8, 32 | eqtri 2228 | 1 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊤wtru 1374 ∈ wcel 2178 〈cop 3646 ↦ cmpt 4121 × cxp 4691 ◡ccnv 4692 ⟶wf 5286 –1-1-onto→wf1o 5289 ‘cfv 5290 (class class class)co 5967 ∈ cmpo 5969 ℂcc 7958 ℝcr 7959 ici 7962 + caddc 7963 · cmul 7965 ℜcre 11266 ℑcim 11267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-2 9130 df-cj 11268 df-re 11269 df-im 11270 |
| This theorem is referenced by: cnrehmeocntop 15197 |
| Copyright terms: Public domain | W3C validator |