ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrecnv GIF version

Theorem cnrecnv 10852
Description: The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 9588. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnrecnv 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Distinct variable groups:   𝑧,𝐹   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
21cnref1o 9588 . . . . . 6 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
3 f1ocnv 5445 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:ℂ–1-1-onto→(ℝ × ℝ))
4 f1of 5432 . . . . . 6 (𝐹:ℂ–1-1-onto→(ℝ × ℝ) → 𝐹:ℂ⟶(ℝ × ℝ))
52, 3, 4mp2b 8 . . . . 5 𝐹:ℂ⟶(ℝ × ℝ)
65a1i 9 . . . 4 (⊤ → 𝐹:ℂ⟶(ℝ × ℝ))
76feqmptd 5539 . . 3 (⊤ → 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
87mptru 1352 . 2 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧))
9 df-ov 5845 . . . . . . 7 ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
10 recl 10795 . . . . . . . 8 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ)
11 imcl 10796 . . . . . . . 8 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ)
1210recnd 7927 . . . . . . . . 9 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℂ)
13 ax-icn 7848 . . . . . . . . . . 11 i ∈ ℂ
1413a1i 9 . . . . . . . . . 10 (𝑧 ∈ ℂ → i ∈ ℂ)
1511recnd 7927 . . . . . . . . . 10 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℂ)
1614, 15mulcld 7919 . . . . . . . . 9 (𝑧 ∈ ℂ → (i · (ℑ‘𝑧)) ∈ ℂ)
1712, 16addcld 7918 . . . . . . . 8 (𝑧 ∈ ℂ → ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ)
18 oveq1 5849 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦)))
19 oveq2 5850 . . . . . . . . . 10 (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧)))
2019oveq2d 5858 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2118, 20, 1ovmpog 5976 . . . . . . . 8 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ ∧ ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ ℂ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2210, 11, 17, 21syl3anc 1228 . . . . . . 7 (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
239, 22eqtr3id 2213 . . . . . 6 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
24 replim 10801 . . . . . 6 (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2523, 24eqtr4d 2201 . . . . 5 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = 𝑧)
2625fveq2d 5490 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = (𝐹𝑧))
27 opelxpi 4636 . . . . . 6 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
2810, 11, 27syl2anc 409 . . . . 5 (𝑧 ∈ ℂ → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
29 f1ocnvfv1 5745 . . . . 5 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ)) → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
302, 28, 29sylancr 411 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
3126, 30eqtr3d 2200 . . 3 (𝑧 ∈ ℂ → (𝐹𝑧) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
3231mpteq2ia 4068 . 2 (𝑧 ∈ ℂ ↦ (𝐹𝑧)) = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
338, 32eqtri 2186 1 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wtru 1344  wcel 2136  cop 3579  cmpt 4043   × cxp 4602  ccnv 4603  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cmpo 5844  cc 7751  cr 7752  ici 7755   + caddc 7756   · cmul 7758  cre 10782  cim 10783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-2 8916  df-cj 10784  df-re 10785  df-im 10786
This theorem is referenced by:  cnrehmeocntop  13233
  Copyright terms: Public domain W3C validator