| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcncf | GIF version | ||
| Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| expcncf | ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5982 | . . . 4 ⊢ (𝑤 = 0 → (𝑥↑𝑤) = (𝑥↑0)) | |
| 2 | 1 | mpteq2dv 4154 | . . 3 ⊢ (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
| 3 | 2 | eleq1d 2278 | . 2 ⊢ (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ))) |
| 4 | oveq2 5982 | . . . 4 ⊢ (𝑤 = 𝑘 → (𝑥↑𝑤) = (𝑥↑𝑘)) | |
| 5 | 4 | mpteq2dv 4154 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
| 6 | 5 | eleq1d 2278 | . 2 ⊢ (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ))) |
| 7 | oveq2 5982 | . . . 4 ⊢ (𝑤 = (𝑘 + 1) → (𝑥↑𝑤) = (𝑥↑(𝑘 + 1))) | |
| 8 | 7 | mpteq2dv 4154 | . . 3 ⊢ (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
| 9 | 8 | eleq1d 2278 | . 2 ⊢ (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
| 10 | oveq2 5982 | . . . 4 ⊢ (𝑤 = 𝑁 → (𝑥↑𝑤) = (𝑥↑𝑁)) | |
| 11 | 10 | mpteq2dv 4154 | . . 3 ⊢ (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
| 12 | 11 | eleq1d 2278 | . 2 ⊢ (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ))) |
| 13 | exp0 10732 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
| 14 | 13 | mpteq2ia 4149 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
| 15 | ax-1cn 8060 | . . . 4 ⊢ 1 ∈ ℂ | |
| 16 | ssid 3224 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 17 | cncfmptc 15235 | . . . 4 ⊢ ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)) | |
| 18 | 15, 16, 16, 17 | mp3an 1352 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ) |
| 19 | 14, 18 | eqeltri 2282 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ) |
| 20 | oveq1 5981 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑎↑𝑘) = (𝑥↑𝑘)) | |
| 21 | 20 | cbvmptv 4159 | . . . . . 6 ⊢ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) |
| 22 | 21 | eleq1i 2275 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 23 | 22 | biimpi 120 | . . . . . . 7 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 24 | 23 | adantl 277 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 25 | cncfmptid 15236 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) | |
| 26 | 16, 16, 25 | mp2an 426 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
| 27 | 26 | a1i 9 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
| 28 | 24, 27 | mulcncf 15247 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 29 | 22, 28 | sylan2br 288 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 30 | expp1 10735 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) | |
| 31 | 30 | ancoms 268 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) |
| 32 | 31 | mpteq2dva 4153 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥))) |
| 33 | 32 | eleq1d 2278 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
| 34 | 33 | adantr 276 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
| 35 | 29, 34 | mpbird 167 | . . 3 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)) |
| 36 | 35 | ex 115 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
| 37 | 3, 6, 9, 12, 19, 36 | nn0ind 9529 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 ↦ cmpt 4124 (class class class)co 5974 ℂcc 7965 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 ℕ0cn0 9337 ↑cexp 10727 –cn→ccncf 15209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-map 6767 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-rp 9818 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-cncf 15210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |