ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcncf GIF version

Theorem expcncf 15125
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
expcncf (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝑁

Proof of Theorem expcncf
Dummy variables 𝑤 𝑘 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5959 . . . 4 (𝑤 = 0 → (𝑥𝑤) = (𝑥↑0))
21mpteq2dv 4139 . . 3 (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0)))
32eleq1d 2275 . 2 (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ)))
4 oveq2 5959 . . . 4 (𝑤 = 𝑘 → (𝑥𝑤) = (𝑥𝑘))
54mpteq2dv 4139 . . 3 (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
65eleq1d 2275 . 2 (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)))
7 oveq2 5959 . . . 4 (𝑤 = (𝑘 + 1) → (𝑥𝑤) = (𝑥↑(𝑘 + 1)))
87mpteq2dv 4139 . . 3 (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
98eleq1d 2275 . 2 (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)))
10 oveq2 5959 . . . 4 (𝑤 = 𝑁 → (𝑥𝑤) = (𝑥𝑁))
1110mpteq2dv 4139 . . 3 (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
1211eleq1d 2275 . 2 (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ)))
13 exp0 10695 . . . 4 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
1413mpteq2ia 4134 . . 3 (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1)
15 ax-1cn 8025 . . . 4 1 ∈ ℂ
16 ssid 3214 . . . 4 ℂ ⊆ ℂ
17 cncfmptc 15112 . . . 4 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
1815, 16, 16, 17mp3an 1350 . . 3 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
1914, 18eqeltri 2279 . 2 (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ)
20 oveq1 5958 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑘) = (𝑥𝑘))
2120cbvmptv 4144 . . . . . 6 (𝑎 ∈ ℂ ↦ (𝑎𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘))
2221eleq1i 2272 . . . . 5 ((𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
2322biimpi 120 . . . . . . 7 ((𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
2423adantl 277 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
25 cncfmptid 15113 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
2616, 16, 25mp2an 426 . . . . . . 7 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
2726a1i 9 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
2824, 27mulcncf 15124 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))
2922, 28sylan2br 288 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))
30 expp1 10698 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
3130ancoms 268 . . . . . . 7 ((𝑘 ∈ ℕ0𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
3231mpteq2dva 4138 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
3332eleq1d 2275 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)))
3433adantr 276 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)))
3529, 34mpbird 167 . . 3 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))
3635ex 115 . 2 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)))
373, 6, 9, 12, 19, 36nn0ind 9494 1 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wss 3167  cmpt 4109  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937  0cn0 9302  cexp 10690  cnccncf 15086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-cncf 15087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator