ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcncf GIF version

Theorem expcncf 13242
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
expcncf (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝑁

Proof of Theorem expcncf
Dummy variables 𝑤 𝑘 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5850 . . . 4 (𝑤 = 0 → (𝑥𝑤) = (𝑥↑0))
21mpteq2dv 4073 . . 3 (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0)))
32eleq1d 2235 . 2 (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ)))
4 oveq2 5850 . . . 4 (𝑤 = 𝑘 → (𝑥𝑤) = (𝑥𝑘))
54mpteq2dv 4073 . . 3 (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
65eleq1d 2235 . 2 (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)))
7 oveq2 5850 . . . 4 (𝑤 = (𝑘 + 1) → (𝑥𝑤) = (𝑥↑(𝑘 + 1)))
87mpteq2dv 4073 . . 3 (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
98eleq1d 2235 . 2 (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)))
10 oveq2 5850 . . . 4 (𝑤 = 𝑁 → (𝑥𝑤) = (𝑥𝑁))
1110mpteq2dv 4073 . . 3 (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
1211eleq1d 2235 . 2 (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ)))
13 exp0 10459 . . . 4 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
1413mpteq2ia 4068 . . 3 (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1)
15 ax-1cn 7846 . . . 4 1 ∈ ℂ
16 ssid 3162 . . . 4 ℂ ⊆ ℂ
17 cncfmptc 13232 . . . 4 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
1815, 16, 16, 17mp3an 1327 . . 3 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
1914, 18eqeltri 2239 . 2 (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ)
20 oveq1 5849 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑘) = (𝑥𝑘))
2120cbvmptv 4078 . . . . . 6 (𝑎 ∈ ℂ ↦ (𝑎𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘))
2221eleq1i 2232 . . . . 5 ((𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
2322biimpi 119 . . . . . . 7 ((𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
2423adantl 275 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
25 cncfmptid 13233 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
2616, 16, 25mp2an 423 . . . . . . 7 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
2726a1i 9 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
2824, 27mulcncf 13241 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))
2922, 28sylan2br 286 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))
30 expp1 10462 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
3130ancoms 266 . . . . . . 7 ((𝑘 ∈ ℕ0𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
3231mpteq2dva 4072 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
3332eleq1d 2235 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)))
3433adantr 274 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)))
3529, 34mpbird 166 . . 3 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))
3635ex 114 . 2 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)))
373, 6, 9, 12, 19, 36nn0ind 9305 1 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wss 3116  cmpt 4043  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758  0cn0 9114  cexp 10454  cnccncf 13207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-cncf 13208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator