![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expcncf | GIF version |
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
expcncf | ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5904 | . . . 4 ⊢ (𝑤 = 0 → (𝑥↑𝑤) = (𝑥↑0)) | |
2 | 1 | mpteq2dv 4109 | . . 3 ⊢ (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
3 | 2 | eleq1d 2258 | . 2 ⊢ (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ))) |
4 | oveq2 5904 | . . . 4 ⊢ (𝑤 = 𝑘 → (𝑥↑𝑤) = (𝑥↑𝑘)) | |
5 | 4 | mpteq2dv 4109 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
6 | 5 | eleq1d 2258 | . 2 ⊢ (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ))) |
7 | oveq2 5904 | . . . 4 ⊢ (𝑤 = (𝑘 + 1) → (𝑥↑𝑤) = (𝑥↑(𝑘 + 1))) | |
8 | 7 | mpteq2dv 4109 | . . 3 ⊢ (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
9 | 8 | eleq1d 2258 | . 2 ⊢ (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
10 | oveq2 5904 | . . . 4 ⊢ (𝑤 = 𝑁 → (𝑥↑𝑤) = (𝑥↑𝑁)) | |
11 | 10 | mpteq2dv 4109 | . . 3 ⊢ (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
12 | 11 | eleq1d 2258 | . 2 ⊢ (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ))) |
13 | exp0 10555 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
14 | 13 | mpteq2ia 4104 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
15 | ax-1cn 7934 | . . . 4 ⊢ 1 ∈ ℂ | |
16 | ssid 3190 | . . . 4 ⊢ ℂ ⊆ ℂ | |
17 | cncfmptc 14542 | . . . 4 ⊢ ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)) | |
18 | 15, 16, 16, 17 | mp3an 1348 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ) |
19 | 14, 18 | eqeltri 2262 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ) |
20 | oveq1 5903 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑎↑𝑘) = (𝑥↑𝑘)) | |
21 | 20 | cbvmptv 4114 | . . . . . 6 ⊢ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) |
22 | 21 | eleq1i 2255 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
23 | 22 | biimpi 120 | . . . . . . 7 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
24 | 23 | adantl 277 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
25 | cncfmptid 14543 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) | |
26 | 16, 16, 25 | mp2an 426 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
27 | 26 | a1i 9 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
28 | 24, 27 | mulcncf 14551 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
29 | 22, 28 | sylan2br 288 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
30 | expp1 10558 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) | |
31 | 30 | ancoms 268 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) |
32 | 31 | mpteq2dva 4108 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥))) |
33 | 32 | eleq1d 2258 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
34 | 33 | adantr 276 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
35 | 29, 34 | mpbird 167 | . . 3 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)) |
36 | 35 | ex 115 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
37 | 3, 6, 9, 12, 19, 36 | nn0ind 9397 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 ↦ cmpt 4079 (class class class)co 5896 ℂcc 7839 0cc0 7841 1c1 7842 + caddc 7844 · cmul 7846 ℕ0cn0 9206 ↑cexp 10550 –cn→ccncf 14517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 ax-arch 7960 ax-caucvg 7961 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-recs 6330 df-frec 6416 df-map 6676 df-sup 7013 df-inf 7014 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-n0 9207 df-z 9284 df-uz 9559 df-rp 9684 df-seqfrec 10477 df-exp 10551 df-cj 10883 df-re 10884 df-im 10885 df-rsqrt 11039 df-abs 11040 df-cncf 14518 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |