| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcncf | GIF version | ||
| Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| expcncf | ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6015 | . . . 4 ⊢ (𝑤 = 0 → (𝑥↑𝑤) = (𝑥↑0)) | |
| 2 | 1 | mpteq2dv 4175 | . . 3 ⊢ (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
| 3 | 2 | eleq1d 2298 | . 2 ⊢ (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ))) |
| 4 | oveq2 6015 | . . . 4 ⊢ (𝑤 = 𝑘 → (𝑥↑𝑤) = (𝑥↑𝑘)) | |
| 5 | 4 | mpteq2dv 4175 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
| 6 | 5 | eleq1d 2298 | . 2 ⊢ (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ))) |
| 7 | oveq2 6015 | . . . 4 ⊢ (𝑤 = (𝑘 + 1) → (𝑥↑𝑤) = (𝑥↑(𝑘 + 1))) | |
| 8 | 7 | mpteq2dv 4175 | . . 3 ⊢ (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
| 9 | 8 | eleq1d 2298 | . 2 ⊢ (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
| 10 | oveq2 6015 | . . . 4 ⊢ (𝑤 = 𝑁 → (𝑥↑𝑤) = (𝑥↑𝑁)) | |
| 11 | 10 | mpteq2dv 4175 | . . 3 ⊢ (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
| 12 | 11 | eleq1d 2298 | . 2 ⊢ (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ))) |
| 13 | exp0 10773 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
| 14 | 13 | mpteq2ia 4170 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
| 15 | ax-1cn 8100 | . . . 4 ⊢ 1 ∈ ℂ | |
| 16 | ssid 3244 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 17 | cncfmptc 15278 | . . . 4 ⊢ ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)) | |
| 18 | 15, 16, 16, 17 | mp3an 1371 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ) |
| 19 | 14, 18 | eqeltri 2302 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ) |
| 20 | oveq1 6014 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑎↑𝑘) = (𝑥↑𝑘)) | |
| 21 | 20 | cbvmptv 4180 | . . . . . 6 ⊢ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) |
| 22 | 21 | eleq1i 2295 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 23 | 22 | biimpi 120 | . . . . . . 7 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 24 | 23 | adantl 277 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 25 | cncfmptid 15279 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) | |
| 26 | 16, 16, 25 | mp2an 426 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
| 27 | 26 | a1i 9 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
| 28 | 24, 27 | mulcncf 15290 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 29 | 22, 28 | sylan2br 288 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 30 | expp1 10776 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) | |
| 31 | 30 | ancoms 268 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) |
| 32 | 31 | mpteq2dva 4174 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥))) |
| 33 | 32 | eleq1d 2298 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
| 34 | 33 | adantr 276 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
| 35 | 29, 34 | mpbird 167 | . . 3 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)) |
| 36 | 35 | ex 115 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
| 37 | 3, 6, 9, 12, 19, 36 | nn0ind 9569 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ↦ cmpt 4145 (class class class)co 6007 ℂcc 8005 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 ℕ0cn0 9377 ↑cexp 10768 –cn→ccncf 15252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-map 6805 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-rp 9858 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-cncf 15253 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |