ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcncf GIF version

Theorem expcncf 15291
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
expcncf (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝑁

Proof of Theorem expcncf
Dummy variables 𝑤 𝑘 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6015 . . . 4 (𝑤 = 0 → (𝑥𝑤) = (𝑥↑0))
21mpteq2dv 4175 . . 3 (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0)))
32eleq1d 2298 . 2 (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ)))
4 oveq2 6015 . . . 4 (𝑤 = 𝑘 → (𝑥𝑤) = (𝑥𝑘))
54mpteq2dv 4175 . . 3 (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
65eleq1d 2298 . 2 (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)))
7 oveq2 6015 . . . 4 (𝑤 = (𝑘 + 1) → (𝑥𝑤) = (𝑥↑(𝑘 + 1)))
87mpteq2dv 4175 . . 3 (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
98eleq1d 2298 . 2 (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)))
10 oveq2 6015 . . . 4 (𝑤 = 𝑁 → (𝑥𝑤) = (𝑥𝑁))
1110mpteq2dv 4175 . . 3 (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
1211eleq1d 2298 . 2 (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ)))
13 exp0 10773 . . . 4 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
1413mpteq2ia 4170 . . 3 (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1)
15 ax-1cn 8100 . . . 4 1 ∈ ℂ
16 ssid 3244 . . . 4 ℂ ⊆ ℂ
17 cncfmptc 15278 . . . 4 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
1815, 16, 16, 17mp3an 1371 . . 3 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
1914, 18eqeltri 2302 . 2 (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ)
20 oveq1 6014 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑘) = (𝑥𝑘))
2120cbvmptv 4180 . . . . . 6 (𝑎 ∈ ℂ ↦ (𝑎𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘))
2221eleq1i 2295 . . . . 5 ((𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
2322biimpi 120 . . . . . . 7 ((𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
2423adantl 277 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
25 cncfmptid 15279 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
2616, 16, 25mp2an 426 . . . . . . 7 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
2726a1i 9 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
2824, 27mulcncf 15290 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))
2922, 28sylan2br 288 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))
30 expp1 10776 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
3130ancoms 268 . . . . . . 7 ((𝑘 ∈ ℕ0𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
3231mpteq2dva 4174 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
3332eleq1d 2298 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)))
3433adantr 276 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)))
3529, 34mpbird 167 . . 3 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))
3635ex 115 . 2 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)))
373, 6, 9, 12, 19, 36nn0ind 9569 1 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wss 3197  cmpt 4145  (class class class)co 6007  cc 8005  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012  0cn0 9377  cexp 10768  cnccncf 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-cncf 15253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator