ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcncf GIF version

Theorem expcncf 15248
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
expcncf (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝑁

Proof of Theorem expcncf
Dummy variables 𝑤 𝑘 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5982 . . . 4 (𝑤 = 0 → (𝑥𝑤) = (𝑥↑0))
21mpteq2dv 4154 . . 3 (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0)))
32eleq1d 2278 . 2 (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ)))
4 oveq2 5982 . . . 4 (𝑤 = 𝑘 → (𝑥𝑤) = (𝑥𝑘))
54mpteq2dv 4154 . . 3 (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
65eleq1d 2278 . 2 (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)))
7 oveq2 5982 . . . 4 (𝑤 = (𝑘 + 1) → (𝑥𝑤) = (𝑥↑(𝑘 + 1)))
87mpteq2dv 4154 . . 3 (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
98eleq1d 2278 . 2 (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)))
10 oveq2 5982 . . . 4 (𝑤 = 𝑁 → (𝑥𝑤) = (𝑥𝑁))
1110mpteq2dv 4154 . . 3 (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
1211eleq1d 2278 . 2 (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ)))
13 exp0 10732 . . . 4 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
1413mpteq2ia 4149 . . 3 (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1)
15 ax-1cn 8060 . . . 4 1 ∈ ℂ
16 ssid 3224 . . . 4 ℂ ⊆ ℂ
17 cncfmptc 15235 . . . 4 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
1815, 16, 16, 17mp3an 1352 . . 3 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
1914, 18eqeltri 2282 . 2 (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ)
20 oveq1 5981 . . . . . . 7 (𝑎 = 𝑥 → (𝑎𝑘) = (𝑥𝑘))
2120cbvmptv 4159 . . . . . 6 (𝑎 ∈ ℂ ↦ (𝑎𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘))
2221eleq1i 2275 . . . . 5 ((𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
2322biimpi 120 . . . . . . 7 ((𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
2423adantl 277 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
25 cncfmptid 15236 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
2616, 16, 25mp2an 426 . . . . . . 7 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
2726a1i 9 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
2824, 27mulcncf 15247 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))
2922, 28sylan2br 288 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))
30 expp1 10735 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
3130ancoms 268 . . . . . . 7 ((𝑘 ∈ ℕ0𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
3231mpteq2dva 4153 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
3332eleq1d 2278 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)))
3433adantr 276 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)))
3529, 34mpbird 167 . . 3 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))
3635ex 115 . 2 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)))
373, 6, 9, 12, 19, 36nn0ind 9529 1 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wss 3177  cmpt 4124  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  0cn0 9337  cexp 10727  cnccncf 15209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-rp 9818  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-cncf 15210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator