Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expcncf | GIF version |
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
expcncf | ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5861 | . . . 4 ⊢ (𝑤 = 0 → (𝑥↑𝑤) = (𝑥↑0)) | |
2 | 1 | mpteq2dv 4080 | . . 3 ⊢ (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
3 | 2 | eleq1d 2239 | . 2 ⊢ (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ))) |
4 | oveq2 5861 | . . . 4 ⊢ (𝑤 = 𝑘 → (𝑥↑𝑤) = (𝑥↑𝑘)) | |
5 | 4 | mpteq2dv 4080 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
6 | 5 | eleq1d 2239 | . 2 ⊢ (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ))) |
7 | oveq2 5861 | . . . 4 ⊢ (𝑤 = (𝑘 + 1) → (𝑥↑𝑤) = (𝑥↑(𝑘 + 1))) | |
8 | 7 | mpteq2dv 4080 | . . 3 ⊢ (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
9 | 8 | eleq1d 2239 | . 2 ⊢ (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
10 | oveq2 5861 | . . . 4 ⊢ (𝑤 = 𝑁 → (𝑥↑𝑤) = (𝑥↑𝑁)) | |
11 | 10 | mpteq2dv 4080 | . . 3 ⊢ (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
12 | 11 | eleq1d 2239 | . 2 ⊢ (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ))) |
13 | exp0 10480 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
14 | 13 | mpteq2ia 4075 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
15 | ax-1cn 7867 | . . . 4 ⊢ 1 ∈ ℂ | |
16 | ssid 3167 | . . . 4 ⊢ ℂ ⊆ ℂ | |
17 | cncfmptc 13376 | . . . 4 ⊢ ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)) | |
18 | 15, 16, 16, 17 | mp3an 1332 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ) |
19 | 14, 18 | eqeltri 2243 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ) |
20 | oveq1 5860 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑎↑𝑘) = (𝑥↑𝑘)) | |
21 | 20 | cbvmptv 4085 | . . . . . 6 ⊢ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) |
22 | 21 | eleq1i 2236 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
23 | 22 | biimpi 119 | . . . . . . 7 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
24 | 23 | adantl 275 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
25 | cncfmptid 13377 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) | |
26 | 16, 16, 25 | mp2an 424 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
27 | 26 | a1i 9 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
28 | 24, 27 | mulcncf 13385 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
29 | 22, 28 | sylan2br 286 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
30 | expp1 10483 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) | |
31 | 30 | ancoms 266 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) |
32 | 31 | mpteq2dva 4079 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥))) |
33 | 32 | eleq1d 2239 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
34 | 33 | adantr 274 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
35 | 29, 34 | mpbird 166 | . . 3 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)) |
36 | 35 | ex 114 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
37 | 3, 6, 9, 12, 19, 36 | nn0ind 9326 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 ↦ cmpt 4050 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 ℕ0cn0 9135 ↑cexp 10475 –cn→ccncf 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-cncf 13352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |