![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expcncf | GIF version |
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
expcncf | ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5877 | . . . 4 ⊢ (𝑤 = 0 → (𝑥↑𝑤) = (𝑥↑0)) | |
2 | 1 | mpteq2dv 4091 | . . 3 ⊢ (𝑤 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
3 | 2 | eleq1d 2246 | . 2 ⊢ (𝑤 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ))) |
4 | oveq2 5877 | . . . 4 ⊢ (𝑤 = 𝑘 → (𝑥↑𝑤) = (𝑥↑𝑘)) | |
5 | 4 | mpteq2dv 4091 | . . 3 ⊢ (𝑤 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
6 | 5 | eleq1d 2246 | . 2 ⊢ (𝑤 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ))) |
7 | oveq2 5877 | . . . 4 ⊢ (𝑤 = (𝑘 + 1) → (𝑥↑𝑤) = (𝑥↑(𝑘 + 1))) | |
8 | 7 | mpteq2dv 4091 | . . 3 ⊢ (𝑤 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
9 | 8 | eleq1d 2246 | . 2 ⊢ (𝑤 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
10 | oveq2 5877 | . . . 4 ⊢ (𝑤 = 𝑁 → (𝑥↑𝑤) = (𝑥↑𝑁)) | |
11 | 10 | mpteq2dv 4091 | . . 3 ⊢ (𝑤 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
12 | 11 | eleq1d 2246 | . 2 ⊢ (𝑤 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑤)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ))) |
13 | exp0 10510 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
14 | 13 | mpteq2ia 4086 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
15 | ax-1cn 7895 | . . . 4 ⊢ 1 ∈ ℂ | |
16 | ssid 3175 | . . . 4 ⊢ ℂ ⊆ ℂ | |
17 | cncfmptc 13749 | . . . 4 ⊢ ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)) | |
18 | 15, 16, 16, 17 | mp3an 1337 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ) |
19 | 14, 18 | eqeltri 2250 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (ℂ–cn→ℂ) |
20 | oveq1 5876 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑎↑𝑘) = (𝑥↑𝑘)) | |
21 | 20 | cbvmptv 4096 | . . . . . 6 ⊢ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) |
22 | 21 | eleq1i 2243 | . . . . 5 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
23 | 22 | biimpi 120 | . . . . . . 7 ⊢ ((𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
24 | 23 | adantl 277 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
25 | cncfmptid 13750 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) | |
26 | 16, 16, 25 | mp2an 426 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
27 | 26 | a1i 9 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
28 | 24, 27 | mulcncf 13758 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑎 ∈ ℂ ↦ (𝑎↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
29 | 22, 28 | sylan2br 288 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ)) |
30 | expp1 10513 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) | |
31 | 30 | ancoms 268 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥↑𝑘) · 𝑥)) |
32 | 31 | mpteq2dva 4090 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥))) |
33 | 32 | eleq1d 2246 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
34 | 33 | adantr 276 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ) ↔ (𝑥 ∈ ℂ ↦ ((𝑥↑𝑘) · 𝑥)) ∈ (ℂ–cn→ℂ))) |
35 | 29, 34 | mpbird 167 | . . 3 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ)) |
36 | 35 | ex 115 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (ℂ–cn→ℂ))) |
37 | 3, 6, 9, 12, 19, 36 | nn0ind 9356 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ⊆ wss 3129 ↦ cmpt 4061 (class class class)co 5869 ℂcc 7800 0cc0 7802 1c1 7803 + caddc 7805 · cmul 7807 ℕ0cn0 9165 ↑cexp 10505 –cn→ccncf 13724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-isom 5221 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-map 6644 df-sup 6977 df-inf 6978 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-rp 9641 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-cncf 13725 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |