| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmpt2nd | GIF version | ||
| Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| Ref | Expression |
|---|---|
| cnmpt2nd | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 6310 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 2 | fofn 5552 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
| 4 | ssv 3246 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
| 5 | fnssres 5436 | . . . . 5 ⊢ ((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
| 6 | 3, 4, 5 | mp2an 426 | . . . 4 ⊢ (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
| 7 | dffn5im 5681 | . . . 4 ⊢ ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧))) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) |
| 9 | fvres 5653 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd ‘𝑧)) | |
| 10 | 9 | mpteq2ia 4170 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((2nd ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) |
| 11 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | vex 2802 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op2ndd 6301 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 14 | 13 | mpompt 6102 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
| 15 | 8, 10, 14 | 3eqtri 2254 | . 2 ⊢ (2nd ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
| 16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 18 | tx2cn 14952 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | |
| 19 | 16, 17, 18 | syl2anc 411 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| 20 | 15, 19 | eqeltrrid 2317 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ↦ cmpt 4145 × cxp 4717 ↾ cres 4721 Fn wfn 5313 –onto→wfo 5316 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 2nd c2nd 6291 TopOnctopon 14692 Cn ccn 14867 ×t ctx 14934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-topgen 13301 df-top 14680 df-topon 14693 df-bases 14725 df-cn 14870 df-tx 14935 |
| This theorem is referenced by: cnmptcom 14980 txhmeo 15001 txswaphmeo 15003 divcnap 15247 cnrehmeocntop 15292 |
| Copyright terms: Public domain | W3C validator |