![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmpt2nd | GIF version |
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt21.k | β’ (π β πΎ β (TopOnβπ)) |
Ref | Expression |
---|---|
cnmpt2nd | β’ (π β (π₯ β π, π¦ β π β¦ π¦) β ((π½ Γt πΎ) Cn πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 6161 | . . . . . 6 β’ 2nd :VβontoβV | |
2 | fofn 5442 | . . . . . 6 β’ (2nd :VβontoβV β 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 β’ 2nd Fn V |
4 | ssv 3179 | . . . . 5 β’ (π Γ π) β V | |
5 | fnssres 5331 | . . . . 5 β’ ((2nd Fn V β§ (π Γ π) β V) β (2nd βΎ (π Γ π)) Fn (π Γ π)) | |
6 | 3, 4, 5 | mp2an 426 | . . . 4 β’ (2nd βΎ (π Γ π)) Fn (π Γ π) |
7 | dffn5im 5563 | . . . 4 β’ ((2nd βΎ (π Γ π)) Fn (π Γ π) β (2nd βΎ (π Γ π)) = (π§ β (π Γ π) β¦ ((2nd βΎ (π Γ π))βπ§))) | |
8 | 6, 7 | ax-mp 5 | . . 3 β’ (2nd βΎ (π Γ π)) = (π§ β (π Γ π) β¦ ((2nd βΎ (π Γ π))βπ§)) |
9 | fvres 5541 | . . . 4 β’ (π§ β (π Γ π) β ((2nd βΎ (π Γ π))βπ§) = (2nd βπ§)) | |
10 | 9 | mpteq2ia 4091 | . . 3 β’ (π§ β (π Γ π) β¦ ((2nd βΎ (π Γ π))βπ§)) = (π§ β (π Γ π) β¦ (2nd βπ§)) |
11 | vex 2742 | . . . . 5 β’ π₯ β V | |
12 | vex 2742 | . . . . 5 β’ π¦ β V | |
13 | 11, 12 | op2ndd 6152 | . . . 4 β’ (π§ = β¨π₯, π¦β© β (2nd βπ§) = π¦) |
14 | 13 | mpompt 5969 | . . 3 β’ (π§ β (π Γ π) β¦ (2nd βπ§)) = (π₯ β π, π¦ β π β¦ π¦) |
15 | 8, 10, 14 | 3eqtri 2202 | . 2 β’ (2nd βΎ (π Γ π)) = (π₯ β π, π¦ β π β¦ π¦) |
16 | cnmpt21.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
17 | cnmpt21.k | . . 3 β’ (π β πΎ β (TopOnβπ)) | |
18 | tx2cn 13855 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (2nd βΎ (π Γ π)) β ((π½ Γt πΎ) Cn πΎ)) | |
19 | 16, 17, 18 | syl2anc 411 | . 2 β’ (π β (2nd βΎ (π Γ π)) β ((π½ Γt πΎ) Cn πΎ)) |
20 | 15, 19 | eqeltrrid 2265 | 1 β’ (π β (π₯ β π, π¦ β π β¦ π¦) β ((π½ Γt πΎ) Cn πΎ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2739 β wss 3131 β¦ cmpt 4066 Γ cxp 4626 βΎ cres 4630 Fn wfn 5213 βontoβwfo 5216 βcfv 5218 (class class class)co 5877 β cmpo 5879 2nd c2nd 6142 TopOnctopon 13595 Cn ccn 13770 Γt ctx 13837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-topgen 12714 df-top 13583 df-topon 13596 df-bases 13628 df-cn 13773 df-tx 13838 |
This theorem is referenced by: cnmptcom 13883 txhmeo 13904 txswaphmeo 13906 divcnap 14140 cnrehmeocntop 14178 |
Copyright terms: Public domain | W3C validator |