ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgcvga GIF version

Theorem eucalgcvga 12236
Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypotheses
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
eucalg.2 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
eucalgcvga.3 𝑁 = (2nd𝐴)
Assertion
Ref Expression
eucalgcvga (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝐴,𝑦   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem eucalgcvga
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eucalgcvga.3 . . . . . . 7 𝑁 = (2nd𝐴)
2 xp2nd 6225 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℕ0)
31, 2eqeltrid 2283 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0)
4 eluznn0 9675 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
53, 4sylan 283 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
6 nn0uz 9638 . . . . . . 7 0 = (ℤ‘0)
7 eucalg.2 . . . . . . 7 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
8 0zd 9340 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ)
9 id 19 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0))
10 eucalgval.1 . . . . . . . . 9 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
1110eucalgf 12233 . . . . . . . 8 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
1211a1i 9 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
136, 7, 8, 9, 12algrf 12223 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0))
1413ffvelcdmda 5698 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
155, 14syldan 282 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
16 fvres 5583 . . . 4 ((𝑅𝐾) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
1715, 16syl 14 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
18 simpl 109 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0))
19 fvres 5583 . . . . . . . 8 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd𝐴))
2019, 1eqtr4di 2247 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁)
2120fveq2d 5563 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ𝑁))
2221eleq2d 2266 . . . . 5 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ𝑁)))
2322biimpar 297 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)))
24 f2ndres 6219 . . . . 5 (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0
2510eucalglt 12235 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑧)) ≠ 0 → (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
2611ffvelcdmi 5697 . . . . . . . 8 (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸𝑧) ∈ (ℕ0 × ℕ0))
27 fvres 5583 . . . . . . . 8 ((𝐸𝑧) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2826, 27syl 14 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2928neeq1d 2385 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 ↔ (2nd ‘(𝐸𝑧)) ≠ 0))
30 fvres 5583 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd𝑧))
3128, 30breq12d 4047 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
3225, 29, 313imtr4d 203 . . . . 5 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧)))
33 eqid 2196 . . . . 5 ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴)
3411, 7, 24, 32, 33algcvga 12229 . . . 4 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0))
3518, 23, 34sylc 62 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0)
3617, 35eqtr3d 2231 . 2 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (2nd ‘(𝑅𝐾)) = 0)
3736ex 115 1 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367  ifcif 3562  {csn 3623  cop 3626   class class class wbr 4034   × cxp 4662  cres 4666  ccom 4668  wf 5255  cfv 5259  (class class class)co 5923  cmpo 5925  1st c1st 6197  2nd c2nd 6198  0cc0 7881   < clt 8063  0cn0 9251  cuz 9603   mod cmo 10416  seqcseq 10541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fl 10362  df-mod 10417  df-seqfrec 10542
This theorem is referenced by:  eucalg  12237
  Copyright terms: Public domain W3C validator