| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eucalgcvga | GIF version | ||
| Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
| Ref | Expression |
|---|---|
| eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
| eucalg.2 | ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) |
| eucalgcvga.3 | ⊢ 𝑁 = (2nd ‘𝐴) |
| Ref | Expression |
|---|---|
| eucalgcvga | ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eucalgcvga.3 | . . . . . . 7 ⊢ 𝑁 = (2nd ‘𝐴) | |
| 2 | xp2nd 6262 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (2nd ‘𝐴) ∈ ℕ0) | |
| 3 | 1, 2 | eqeltrid 2293 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0) |
| 4 | eluznn0 9733 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) | |
| 5 | 3, 4 | sylan 283 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) |
| 6 | nn0uz 9696 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 7 | eucalg.2 | . . . . . . 7 ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) | |
| 8 | 0zd 9397 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ) | |
| 9 | id 19 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
| 10 | eucalgval.1 | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
| 11 | 10 | eucalgf 12427 | . . . . . . . 8 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
| 12 | 11 | a1i 9 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
| 13 | 6, 7, 8, 9, 12 | algrf 12417 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0)) |
| 14 | 13 | ffvelcdmda 5725 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
| 15 | 5, 14 | syldan 282 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
| 16 | fvres 5610 | . . . 4 ⊢ ((𝑅‘𝐾) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) | |
| 17 | 15, 16 | syl 14 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) |
| 18 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
| 19 | fvres 5610 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd ‘𝐴)) | |
| 20 | 19, 1 | eqtr4di 2257 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁) |
| 21 | 20 | fveq2d 5590 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ≥‘𝑁)) |
| 22 | 21 | eleq2d 2276 | . . . . 5 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ≥‘𝑁))) |
| 23 | 22 | biimpar 297 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴))) |
| 24 | f2ndres 6256 | . . . . 5 ⊢ (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0 | |
| 25 | 10 | eucalglt 12429 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸‘𝑧)) ≠ 0 → (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
| 26 | 11 | ffvelcdmi 5724 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸‘𝑧) ∈ (ℕ0 × ℕ0)) |
| 27 | fvres 5610 | . . . . . . . 8 ⊢ ((𝐸‘𝑧) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) | |
| 28 | 26, 27 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) |
| 29 | 28 | neeq1d 2395 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 ↔ (2nd ‘(𝐸‘𝑧)) ≠ 0)) |
| 30 | fvres 5610 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd ‘𝑧)) | |
| 31 | 28, 30 | breq12d 4061 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
| 32 | 25, 29, 31 | 3imtr4d 203 | . . . . 5 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧))) |
| 33 | eqid 2206 | . . . . 5 ⊢ ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) | |
| 34 | 11, 7, 24, 32, 33 | algcvga 12423 | . . . 4 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0)) |
| 35 | 18, 23, 34 | sylc 62 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0) |
| 36 | 17, 35 | eqtr3d 2241 | . 2 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (2nd ‘(𝑅‘𝐾)) = 0) |
| 37 | 36 | ex 115 | 1 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ifcif 3573 {csn 3635 〈cop 3638 class class class wbr 4048 × cxp 4678 ↾ cres 4682 ∘ ccom 4684 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 ∈ cmpo 5956 1st c1st 6234 2nd c2nd 6235 0cc0 7938 < clt 8120 ℕ0cn0 9308 ℤ≥cuz 9661 mod cmo 10480 seqcseq 10605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fl 10426 df-mod 10481 df-seqfrec 10606 |
| This theorem is referenced by: eucalg 12431 |
| Copyright terms: Public domain | W3C validator |