Step | Hyp | Ref
| Expression |
1 | | eucalgcvga.3 |
. . . . . . 7
β’ π = (2nd βπ΄) |
2 | | xp2nd 6169 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β (2nd βπ΄) β
β0) |
3 | 1, 2 | eqeltrid 2264 |
. . . . . 6
β’ (π΄ β (β0
Γ β0) β π β
β0) |
4 | | eluznn0 9601 |
. . . . . 6
β’ ((π β β0
β§ πΎ β
(β€β₯βπ)) β πΎ β
β0) |
5 | 3, 4 | sylan 283 |
. . . . 5
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β πΎ β
β0) |
6 | | nn0uz 9564 |
. . . . . . 7
β’
β0 = (β€β₯β0) |
7 | | eucalg.2 |
. . . . . . 7
β’ π
= seq0((πΈ β 1st ),
(β0 Γ {π΄})) |
8 | | 0zd 9267 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β 0 β β€) |
9 | | id 19 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β π΄ β (β0 Γ
β0)) |
10 | | eucalgval.1 |
. . . . . . . . 9
β’ πΈ = (π₯ β β0, π¦ β β0
β¦ if(π¦ = 0,
β¨π₯, π¦β©, β¨π¦, (π₯ mod π¦)β©)) |
11 | 10 | eucalgf 12057 |
. . . . . . . 8
β’ πΈ:(β0 Γ
β0)βΆ(β0 Γ
β0) |
12 | 11 | a1i 9 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β πΈ:(β0 Γ
β0)βΆ(β0 Γ
β0)) |
13 | 6, 7, 8, 9, 12 | algrf 12047 |
. . . . . 6
β’ (π΄ β (β0
Γ β0) β π
:β0βΆ(β0
Γ β0)) |
14 | 13 | ffvelcdmda 5653 |
. . . . 5
β’ ((π΄ β (β0
Γ β0) β§ πΎ β β0) β (π
βπΎ) β (β0 Γ
β0)) |
15 | 5, 14 | syldan 282 |
. . . 4
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β (π
βπΎ) β (β0 Γ
β0)) |
16 | | fvres 5541 |
. . . 4
β’ ((π
βπΎ) β (β0 Γ
β0) β ((2nd βΎ (β0
Γ β0))β(π
βπΎ)) = (2nd β(π
βπΎ))) |
17 | 15, 16 | syl 14 |
. . 3
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β ((2nd
βΎ (β0 Γ β0))β(π
βπΎ)) = (2nd β(π
βπΎ))) |
18 | | simpl 109 |
. . . 4
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β π΄ β (β0 Γ
β0)) |
19 | | fvres 5541 |
. . . . . . . 8
β’ (π΄ β (β0
Γ β0) β ((2nd βΎ
(β0 Γ β0))βπ΄) = (2nd βπ΄)) |
20 | 19, 1 | eqtr4di 2228 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β ((2nd βΎ
(β0 Γ β0))βπ΄) = π) |
21 | 20 | fveq2d 5521 |
. . . . . 6
β’ (π΄ β (β0
Γ β0) β
(β€β₯β((2nd βΎ (β0
Γ β0))βπ΄)) = (β€β₯βπ)) |
22 | 21 | eleq2d 2247 |
. . . . 5
β’ (π΄ β (β0
Γ β0) β (πΎ β
(β€β₯β((2nd βΎ (β0
Γ β0))βπ΄)) β πΎ β (β€β₯βπ))) |
23 | 22 | biimpar 297 |
. . . 4
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β πΎ β
(β€β₯β((2nd βΎ (β0
Γ β0))βπ΄))) |
24 | | f2ndres 6163 |
. . . . 5
β’
(2nd βΎ (β0 Γ
β0)):(β0 Γ
β0)βΆβ0 |
25 | 10 | eucalglt 12059 |
. . . . . 6
β’ (π§ β (β0
Γ β0) β ((2nd β(πΈβπ§)) β 0 β (2nd
β(πΈβπ§)) < (2nd
βπ§))) |
26 | 11 | ffvelcdmi 5652 |
. . . . . . . 8
β’ (π§ β (β0
Γ β0) β (πΈβπ§) β (β0 Γ
β0)) |
27 | | fvres 5541 |
. . . . . . . 8
β’ ((πΈβπ§) β (β0 Γ
β0) β ((2nd βΎ (β0
Γ β0))β(πΈβπ§)) = (2nd β(πΈβπ§))) |
28 | 26, 27 | syl 14 |
. . . . . . 7
β’ (π§ β (β0
Γ β0) β ((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) = (2nd β(πΈβπ§))) |
29 | 28 | neeq1d 2365 |
. . . . . 6
β’ (π§ β (β0
Γ β0) β (((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) β 0 β (2nd
β(πΈβπ§)) β 0)) |
30 | | fvres 5541 |
. . . . . . 7
β’ (π§ β (β0
Γ β0) β ((2nd βΎ
(β0 Γ β0))βπ§) = (2nd βπ§)) |
31 | 28, 30 | breq12d 4018 |
. . . . . 6
β’ (π§ β (β0
Γ β0) β (((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) < ((2nd βΎ
(β0 Γ β0))βπ§) β (2nd β(πΈβπ§)) < (2nd βπ§))) |
32 | 25, 29, 31 | 3imtr4d 203 |
. . . . 5
β’ (π§ β (β0
Γ β0) β (((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) β 0 β ((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) < ((2nd βΎ
(β0 Γ β0))βπ§))) |
33 | | eqid 2177 |
. . . . 5
β’
((2nd βΎ (β0 Γ
β0))βπ΄) = ((2nd βΎ
(β0 Γ β0))βπ΄) |
34 | 11, 7, 24, 32, 33 | algcvga 12053 |
. . . 4
β’ (π΄ β (β0
Γ β0) β (πΎ β
(β€β₯β((2nd βΎ (β0
Γ β0))βπ΄)) β ((2nd βΎ
(β0 Γ β0))β(π
βπΎ)) = 0)) |
35 | 18, 23, 34 | sylc 62 |
. . 3
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β ((2nd
βΎ (β0 Γ β0))β(π
βπΎ)) = 0) |
36 | 17, 35 | eqtr3d 2212 |
. 2
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β (2nd
β(π
βπΎ)) = 0) |
37 | 36 | ex 115 |
1
β’ (π΄ β (β0
Γ β0) β (πΎ β (β€β₯βπ) β (2nd
β(π
βπΎ)) = 0)) |