ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgcvga GIF version

Theorem eucalgcvga 11999
Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypotheses
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
eucalg.2 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
eucalgcvga.3 𝑁 = (2nd𝐴)
Assertion
Ref Expression
eucalgcvga (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝐴,𝑦   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem eucalgcvga
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eucalgcvga.3 . . . . . . 7 𝑁 = (2nd𝐴)
2 xp2nd 6142 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℕ0)
31, 2eqeltrid 2257 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0)
4 eluznn0 9545 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
53, 4sylan 281 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
6 nn0uz 9508 . . . . . . 7 0 = (ℤ‘0)
7 eucalg.2 . . . . . . 7 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
8 0zd 9211 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ)
9 id 19 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0))
10 eucalgval.1 . . . . . . . . 9 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
1110eucalgf 11996 . . . . . . . 8 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
1211a1i 9 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
136, 7, 8, 9, 12algrf 11986 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0))
1413ffvelrnda 5628 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
155, 14syldan 280 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
16 fvres 5518 . . . 4 ((𝑅𝐾) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
1715, 16syl 14 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
18 simpl 108 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0))
19 fvres 5518 . . . . . . . 8 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd𝐴))
2019, 1eqtr4di 2221 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁)
2120fveq2d 5498 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ𝑁))
2221eleq2d 2240 . . . . 5 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ𝑁)))
2322biimpar 295 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)))
24 f2ndres 6136 . . . . 5 (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0
2510eucalglt 11998 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑧)) ≠ 0 → (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
2611ffvelrni 5627 . . . . . . . 8 (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸𝑧) ∈ (ℕ0 × ℕ0))
27 fvres 5518 . . . . . . . 8 ((𝐸𝑧) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2826, 27syl 14 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2928neeq1d 2358 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 ↔ (2nd ‘(𝐸𝑧)) ≠ 0))
30 fvres 5518 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd𝑧))
3128, 30breq12d 4000 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
3225, 29, 313imtr4d 202 . . . . 5 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧)))
33 eqid 2170 . . . . 5 ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴)
3411, 7, 24, 32, 33algcvga 11992 . . . 4 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0))
3518, 23, 34sylc 62 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0)
3617, 35eqtr3d 2205 . 2 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (2nd ‘(𝑅𝐾)) = 0)
3736ex 114 1 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wne 2340  ifcif 3525  {csn 3581  cop 3584   class class class wbr 3987   × cxp 4607  cres 4611  ccom 4613  wf 5192  cfv 5196  (class class class)co 5850  cmpo 5852  1st c1st 6114  2nd c2nd 6115  0cc0 7761   < clt 7941  0cn0 9122  cuz 9474   mod cmo 10265  seqcseq 10388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fl 10213  df-mod 10266  df-seqfrec 10389
This theorem is referenced by:  eucalg  12000
  Copyright terms: Public domain W3C validator