ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgcvga GIF version

Theorem eucalgcvga 12196
Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypotheses
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
eucalg.2 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
eucalgcvga.3 𝑁 = (2nd𝐴)
Assertion
Ref Expression
eucalgcvga (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝐴,𝑦   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem eucalgcvga
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eucalgcvga.3 . . . . . . 7 𝑁 = (2nd𝐴)
2 xp2nd 6219 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℕ0)
31, 2eqeltrid 2280 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0)
4 eluznn0 9664 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
53, 4sylan 283 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
6 nn0uz 9627 . . . . . . 7 0 = (ℤ‘0)
7 eucalg.2 . . . . . . 7 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
8 0zd 9329 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ)
9 id 19 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0))
10 eucalgval.1 . . . . . . . . 9 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
1110eucalgf 12193 . . . . . . . 8 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
1211a1i 9 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
136, 7, 8, 9, 12algrf 12183 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0))
1413ffvelcdmda 5693 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
155, 14syldan 282 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
16 fvres 5578 . . . 4 ((𝑅𝐾) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
1715, 16syl 14 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
18 simpl 109 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0))
19 fvres 5578 . . . . . . . 8 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd𝐴))
2019, 1eqtr4di 2244 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁)
2120fveq2d 5558 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ𝑁))
2221eleq2d 2263 . . . . 5 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ𝑁)))
2322biimpar 297 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)))
24 f2ndres 6213 . . . . 5 (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0
2510eucalglt 12195 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑧)) ≠ 0 → (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
2611ffvelcdmi 5692 . . . . . . . 8 (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸𝑧) ∈ (ℕ0 × ℕ0))
27 fvres 5578 . . . . . . . 8 ((𝐸𝑧) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2826, 27syl 14 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2928neeq1d 2382 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 ↔ (2nd ‘(𝐸𝑧)) ≠ 0))
30 fvres 5578 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd𝑧))
3128, 30breq12d 4042 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
3225, 29, 313imtr4d 203 . . . . 5 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧)))
33 eqid 2193 . . . . 5 ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴)
3411, 7, 24, 32, 33algcvga 12189 . . . 4 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0))
3518, 23, 34sylc 62 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0)
3617, 35eqtr3d 2228 . 2 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (2nd ‘(𝑅𝐾)) = 0)
3736ex 115 1 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wne 2364  ifcif 3557  {csn 3618  cop 3621   class class class wbr 4029   × cxp 4657  cres 4661  ccom 4663  wf 5250  cfv 5254  (class class class)co 5918  cmpo 5920  1st c1st 6191  2nd c2nd 6192  0cc0 7872   < clt 8054  0cn0 9240  cuz 9592   mod cmo 10393  seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fl 10339  df-mod 10394  df-seqfrec 10519
This theorem is referenced by:  eucalg  12197
  Copyright terms: Public domain W3C validator