ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgcvga GIF version

Theorem eucalgcvga 11969
Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypotheses
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
eucalg.2 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
eucalgcvga.3 𝑁 = (2nd𝐴)
Assertion
Ref Expression
eucalgcvga (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝐴,𝑦   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem eucalgcvga
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eucalgcvga.3 . . . . . . 7 𝑁 = (2nd𝐴)
2 xp2nd 6126 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℕ0)
31, 2eqeltrid 2251 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0)
4 eluznn0 9528 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
53, 4sylan 281 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
6 nn0uz 9491 . . . . . . 7 0 = (ℤ‘0)
7 eucalg.2 . . . . . . 7 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
8 0zd 9194 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ)
9 id 19 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0))
10 eucalgval.1 . . . . . . . . 9 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
1110eucalgf 11966 . . . . . . . 8 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
1211a1i 9 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
136, 7, 8, 9, 12algrf 11956 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0))
1413ffvelrnda 5614 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
155, 14syldan 280 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
16 fvres 5504 . . . 4 ((𝑅𝐾) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
1715, 16syl 14 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
18 simpl 108 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0))
19 fvres 5504 . . . . . . . 8 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd𝐴))
2019, 1eqtr4di 2215 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁)
2120fveq2d 5484 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ𝑁))
2221eleq2d 2234 . . . . 5 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ𝑁)))
2322biimpar 295 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)))
24 f2ndres 6120 . . . . 5 (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0
2510eucalglt 11968 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑧)) ≠ 0 → (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
2611ffvelrni 5613 . . . . . . . 8 (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸𝑧) ∈ (ℕ0 × ℕ0))
27 fvres 5504 . . . . . . . 8 ((𝐸𝑧) ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2826, 27syl 14 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2928neeq1d 2352 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 ↔ (2nd ‘(𝐸𝑧)) ≠ 0))
30 fvres 5504 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd𝑧))
3128, 30breq12d 3989 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
3225, 29, 313imtr4d 202 . . . . 5 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧)))
33 eqid 2164 . . . . 5 ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴)
3411, 7, 24, 32, 33algcvga 11962 . . . 4 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0))
3518, 23, 34sylc 62 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0)
3617, 35eqtr3d 2199 . 2 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (2nd ‘(𝑅𝐾)) = 0)
3736ex 114 1 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  wne 2334  ifcif 3515  {csn 3570  cop 3573   class class class wbr 3976   × cxp 4596  cres 4600  ccom 4602  wf 5178  cfv 5182  (class class class)co 5836  cmpo 5838  1st c1st 6098  2nd c2nd 6099  0cc0 7744   < clt 7924  0cn0 9105  cuz 9457   mod cmo 10247  seqcseq 10370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fl 10195  df-mod 10248  df-seqfrec 10371
This theorem is referenced by:  eucalg  11970
  Copyright terms: Public domain W3C validator