ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvg GIF version

Theorem algcvg 12414
Description: One way to prove that an algorithm halts is to construct a countdown function 𝐶:𝑆⟶ℕ0 whose value is guaranteed to decrease for each iteration of 𝐹 until it reaches 0. That is, if 𝑋𝑆 is not a fixed point of 𝐹, then (𝐶‘(𝐹𝑋)) < (𝐶𝑋).

If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.)

Hypotheses
Ref Expression
algcvg.1 𝐹:𝑆𝑆
algcvg.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvg.3 𝐶:𝑆⟶ℕ0
algcvg.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvg.5 𝑁 = (𝐶𝐴)
Assertion
Ref Expression
algcvg (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝑁(𝑧)

Proof of Theorem algcvg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9690 . . . 4 0 = (ℤ‘0)
2 algcvg.2 . . . 4 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
3 0zd 9391 . . . 4 (𝐴𝑆 → 0 ∈ ℤ)
4 id 19 . . . 4 (𝐴𝑆𝐴𝑆)
5 algcvg.1 . . . . 5 𝐹:𝑆𝑆
65a1i 9 . . . 4 (𝐴𝑆𝐹:𝑆𝑆)
71, 2, 3, 4, 6algrf 12411 . . 3 (𝐴𝑆𝑅:ℕ0𝑆)
8 algcvg.5 . . . 4 𝑁 = (𝐶𝐴)
9 algcvg.3 . . . . 5 𝐶:𝑆⟶ℕ0
109ffvelcdmi 5721 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
118, 10eqeltrid 2293 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
12 fvco3 5657 . . 3 ((𝑅:ℕ0𝑆𝑁 ∈ ℕ0) → ((𝐶𝑅)‘𝑁) = (𝐶‘(𝑅𝑁)))
137, 11, 12syl2anc 411 . 2 (𝐴𝑆 → ((𝐶𝑅)‘𝑁) = (𝐶‘(𝑅𝑁)))
14 fco 5447 . . . 4 ((𝐶:𝑆⟶ℕ0𝑅:ℕ0𝑆) → (𝐶𝑅):ℕ0⟶ℕ0)
159, 7, 14sylancr 414 . . 3 (𝐴𝑆 → (𝐶𝑅):ℕ0⟶ℕ0)
16 0nn0 9317 . . . . . 6 0 ∈ ℕ0
17 fvco3 5657 . . . . . 6 ((𝑅:ℕ0𝑆 ∧ 0 ∈ ℕ0) → ((𝐶𝑅)‘0) = (𝐶‘(𝑅‘0)))
187, 16, 17sylancl 413 . . . . 5 (𝐴𝑆 → ((𝐶𝑅)‘0) = (𝐶‘(𝑅‘0)))
191, 2, 3, 4, 6ialgr0 12410 . . . . . 6 (𝐴𝑆 → (𝑅‘0) = 𝐴)
2019fveq2d 5587 . . . . 5 (𝐴𝑆 → (𝐶‘(𝑅‘0)) = (𝐶𝐴))
2118, 20eqtrd 2239 . . . 4 (𝐴𝑆 → ((𝐶𝑅)‘0) = (𝐶𝐴))
228, 21eqtr4id 2258 . . 3 (𝐴𝑆𝑁 = ((𝐶𝑅)‘0))
237ffvelcdmda 5722 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
24 2fveq3 5588 . . . . . . . 8 (𝑧 = (𝑅𝑘) → (𝐶‘(𝐹𝑧)) = (𝐶‘(𝐹‘(𝑅𝑘))))
2524neeq1d 2395 . . . . . . 7 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
26 fveq2 5583 . . . . . . . 8 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
2724, 26breq12d 4060 . . . . . . 7 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) < (𝐶𝑧) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
2825, 27imbi12d 234 . . . . . 6 (𝑧 = (𝑅𝑘) → (((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘)))))
29 algcvg.4 . . . . . 6 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
3028, 29vtoclga 2840 . . . . 5 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
3123, 30syl 14 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
32 peano2nn0 9342 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
33 fvco3 5657 . . . . . . 7 ((𝑅:ℕ0𝑆 ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1))))
347, 32, 33syl2an 289 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1))))
351, 2, 3, 4, 6algrp1 12412 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3635fveq2d 5587 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐶‘(𝑅‘(𝑘 + 1))) = (𝐶‘(𝐹‘(𝑅𝑘))))
3734, 36eqtrd 2239 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝐹‘(𝑅𝑘))))
3837neeq1d 2395 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
39 fvco3 5657 . . . . . 6 ((𝑅:ℕ0𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘𝑘) = (𝐶‘(𝑅𝑘)))
407, 39sylan 283 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘𝑘) = (𝐶‘(𝑅𝑘)))
4137, 40breq12d 4060 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) < ((𝐶𝑅)‘𝑘) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
4231, 38, 413imtr4d 203 . . 3 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) ≠ 0 → ((𝐶𝑅)‘(𝑘 + 1)) < ((𝐶𝑅)‘𝑘)))
4315, 22, 42nn0seqcvgd 12407 . 2 (𝐴𝑆 → ((𝐶𝑅)‘𝑁) = 0)
4413, 43eqtr3d 2241 1 (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wne 2377  {csn 3634   class class class wbr 4047   × cxp 4677  ccom 4683  wf 5272  cfv 5276  (class class class)co 5951  1st c1st 6231  0cc0 7932  1c1 7933   + caddc 7935   < clt 8114  0cn0 9302  seqcseq 10599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-seqfrec 10600
This theorem is referenced by:  algcvga  12417
  Copyright terms: Public domain W3C validator