| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algcvg | GIF version | ||
| Description: One way to prove that an
algorithm halts is to construct a countdown
function 𝐶:𝑆⟶ℕ0 whose
value is guaranteed to decrease for
each iteration of 𝐹 until it reaches 0. That is, if 𝑋 ∈ 𝑆
is not a fixed point of 𝐹, then
(𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋).
If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅‘𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| algcvg.1 | ⊢ 𝐹:𝑆⟶𝑆 |
| algcvg.2 | ⊢ 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴})) |
| algcvg.3 | ⊢ 𝐶:𝑆⟶ℕ0 |
| algcvg.4 | ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) |
| algcvg.5 | ⊢ 𝑁 = (𝐶‘𝐴) |
| Ref | Expression |
|---|---|
| algcvg | ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9725 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | algcvg.2 | . . . 4 ⊢ 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴})) | |
| 3 | 0zd 9426 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) | |
| 4 | id 19 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) | |
| 5 | algcvg.1 | . . . . 5 ⊢ 𝐹:𝑆⟶𝑆 | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) |
| 7 | 1, 2, 3, 4, 6 | algrf 12533 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) |
| 8 | algcvg.5 | . . . 4 ⊢ 𝑁 = (𝐶‘𝐴) | |
| 9 | algcvg.3 | . . . . 5 ⊢ 𝐶:𝑆⟶ℕ0 | |
| 10 | 9 | ffvelcdmi 5742 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘𝐴) ∈ ℕ0) |
| 11 | 8, 10 | eqeltrid 2296 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑁 ∈ ℕ0) |
| 12 | fvco3 5678 | . . 3 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 𝑁 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑁) = (𝐶‘(𝑅‘𝑁))) | |
| 13 | 7, 11, 12 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘𝑁) = (𝐶‘(𝑅‘𝑁))) |
| 14 | fco 5465 | . . . 4 ⊢ ((𝐶:𝑆⟶ℕ0 ∧ 𝑅:ℕ0⟶𝑆) → (𝐶 ∘ 𝑅):ℕ0⟶ℕ0) | |
| 15 | 9, 7, 14 | sylancr 414 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (𝐶 ∘ 𝑅):ℕ0⟶ℕ0) |
| 16 | 0nn0 9352 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 17 | fvco3 5678 | . . . . . 6 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 0 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘(𝑅‘0))) | |
| 18 | 7, 16, 17 | sylancl 413 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘(𝑅‘0))) |
| 19 | 1, 2, 3, 4, 6 | ialgr0 12532 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → (𝑅‘0) = 𝐴) |
| 20 | 19 | fveq2d 5607 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘0)) = (𝐶‘𝐴)) |
| 21 | 18, 20 | eqtrd 2242 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘𝐴)) |
| 22 | 8, 21 | eqtr4id 2261 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑁 = ((𝐶 ∘ 𝑅)‘0)) |
| 23 | 7 | ffvelcdmda 5743 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) |
| 24 | 2fveq3 5608 | . . . . . . . 8 ⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘(𝐹‘𝑧)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) | |
| 25 | 24 | neeq1d 2398 | . . . . . . 7 ⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
| 26 | fveq2 5603 | . . . . . . . 8 ⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘𝑧) = (𝐶‘(𝑅‘𝑘))) | |
| 27 | 24, 26 | breq12d 4075 | . . . . . . 7 ⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
| 28 | 25, 27 | imbi12d 234 | . . . . . 6 ⊢ (𝑧 = (𝑅‘𝑘) → (((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))))) |
| 29 | algcvg.4 | . . . . . 6 ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) | |
| 30 | 28, 29 | vtoclga 2847 | . . . . 5 ⊢ ((𝑅‘𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
| 31 | 23, 30 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
| 32 | peano2nn0 9377 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0) | |
| 33 | fvco3 5678 | . . . . . . 7 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1)))) | |
| 34 | 7, 32, 33 | syl2an 289 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1)))) |
| 35 | 1, 2, 3, 4, 6 | algrp1 12534 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
| 36 | 35 | fveq2d 5607 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐶‘(𝑅‘(𝑘 + 1))) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
| 37 | 34, 36 | eqtrd 2242 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
| 38 | 37 | neeq1d 2398 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
| 39 | fvco3 5678 | . . . . . 6 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑘) = (𝐶‘(𝑅‘𝑘))) | |
| 40 | 7, 39 | sylan 283 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑘) = (𝐶‘(𝑅‘𝑘))) |
| 41 | 37, 40 | breq12d 4075 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) < ((𝐶 ∘ 𝑅)‘𝑘) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
| 42 | 31, 38, 41 | 3imtr4d 203 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) ≠ 0 → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) < ((𝐶 ∘ 𝑅)‘𝑘))) |
| 43 | 15, 22, 42 | nn0seqcvgd 12529 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘𝑁) = 0) |
| 44 | 13, 43 | eqtr3d 2244 | 1 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 {csn 3646 class class class wbr 4062 × cxp 4694 ∘ ccom 4700 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 1st c1st 6254 0cc0 7967 1c1 7968 + caddc 7970 < clt 8149 ℕ0cn0 9337 seqcseq 10636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-seqfrec 10637 |
| This theorem is referenced by: algcvga 12539 |
| Copyright terms: Public domain | W3C validator |