ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11 GIF version

Theorem cnmpt11 13822
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt11.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
cnmpt11.b (πœ‘ β†’ (𝑦 ∈ π‘Œ ↦ 𝐡) ∈ (𝐾 Cn 𝐿))
cnmpt11.c (𝑦 = 𝐴 β†’ 𝐡 = 𝐢)
Assertion
Ref Expression
cnmpt11 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐢) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑦,𝐴   π‘₯,𝑦   πœ‘,π‘₯   π‘₯,𝐽,𝑦   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦   π‘₯,𝐾,𝑦   π‘₯,𝐿,𝑦   π‘₯,𝐡   𝑦,𝐢
Allowed substitution hints:   πœ‘(𝑦)   𝐴(π‘₯)   𝐡(𝑦)   𝐢(π‘₯)

Proof of Theorem cnmpt11
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ 𝑋)
2 cnmptid.j . . . . . . . . . . . 12 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3 cnmpt11.k . . . . . . . . . . . 12 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
4 cnmpt11.a . . . . . . . . . . . 12 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
5 cnf2 13744 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆπ‘Œ)
62, 3, 4, 5syl3anc 1238 . . . . . . . . . . 11 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆπ‘Œ)
7 eqid 2177 . . . . . . . . . . . 12 (π‘₯ ∈ 𝑋 ↦ 𝐴) = (π‘₯ ∈ 𝑋 ↦ 𝐴)
87fmpt 5668 . . . . . . . . . . 11 (βˆ€π‘₯ ∈ 𝑋 𝐴 ∈ π‘Œ ↔ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆπ‘Œ)
96, 8sylibr 134 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑋 𝐴 ∈ π‘Œ)
109r19.21bi 2565 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐴 ∈ π‘Œ)
117fvmpt2 5601 . . . . . . . . 9 ((π‘₯ ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯) = 𝐴)
121, 10, 11syl2anc 411 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯) = 𝐴)
1312fveq2d 5521 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡)β€˜((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯)) = ((𝑦 ∈ π‘Œ ↦ 𝐡)β€˜π΄))
14 eqid 2177 . . . . . . . 8 (𝑦 ∈ π‘Œ ↦ 𝐡) = (𝑦 ∈ π‘Œ ↦ 𝐡)
15 cnmpt11.c . . . . . . . 8 (𝑦 = 𝐴 β†’ 𝐡 = 𝐢)
1615eleq1d 2246 . . . . . . . . 9 (𝑦 = 𝐴 β†’ (𝐡 ∈ βˆͺ 𝐿 ↔ 𝐢 ∈ βˆͺ 𝐿))
17 cnmpt11.b . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑦 ∈ π‘Œ ↦ 𝐡) ∈ (𝐾 Cn 𝐿))
18 cntop2 13741 . . . . . . . . . . . . . 14 ((𝑦 ∈ π‘Œ ↦ 𝐡) ∈ (𝐾 Cn 𝐿) β†’ 𝐿 ∈ Top)
1917, 18syl 14 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐿 ∈ Top)
20 eqid 2177 . . . . . . . . . . . . . 14 βˆͺ 𝐿 = βˆͺ 𝐿
2120toptopon 13557 . . . . . . . . . . . . 13 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
2219, 21sylib 122 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
23 cnf2 13744 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿) ∧ (𝑦 ∈ π‘Œ ↦ 𝐡) ∈ (𝐾 Cn 𝐿)) β†’ (𝑦 ∈ π‘Œ ↦ 𝐡):π‘ŒβŸΆβˆͺ 𝐿)
243, 22, 17, 23syl3anc 1238 . . . . . . . . . . 11 (πœ‘ β†’ (𝑦 ∈ π‘Œ ↦ 𝐡):π‘ŒβŸΆβˆͺ 𝐿)
2514fmpt 5668 . . . . . . . . . . 11 (βˆ€π‘¦ ∈ π‘Œ 𝐡 ∈ βˆͺ 𝐿 ↔ (𝑦 ∈ π‘Œ ↦ 𝐡):π‘ŒβŸΆβˆͺ 𝐿)
2624, 25sylibr 134 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘¦ ∈ π‘Œ 𝐡 ∈ βˆͺ 𝐿)
2726adantr 276 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ βˆ€π‘¦ ∈ π‘Œ 𝐡 ∈ βˆͺ 𝐿)
2816, 27, 10rspcdva 2848 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐢 ∈ βˆͺ 𝐿)
2914, 15, 10, 28fvmptd3 5611 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡)β€˜π΄) = 𝐢)
3013, 29eqtrd 2210 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡)β€˜((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯)) = 𝐢)
31 fvco3 5589 . . . . . . 7 (((π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ 𝑋) β†’ (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘₯) = ((𝑦 ∈ π‘Œ ↦ 𝐡)β€˜((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯)))
326, 31sylan 283 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘₯) = ((𝑦 ∈ π‘Œ ↦ 𝐡)β€˜((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯)))
33 eqid 2177 . . . . . . . 8 (π‘₯ ∈ 𝑋 ↦ 𝐢) = (π‘₯ ∈ 𝑋 ↦ 𝐢)
3433fvmpt2 5601 . . . . . . 7 ((π‘₯ ∈ 𝑋 ∧ 𝐢 ∈ βˆͺ 𝐿) β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘₯) = 𝐢)
351, 28, 34syl2anc 411 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘₯) = 𝐢)
3630, 32, 353eqtr4d 2220 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘₯) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘₯))
3736ralrimiva 2550 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑋 (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘₯) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘₯))
38 nfv 1528 . . . . 5 Ⅎ𝑧(((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘₯) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘₯)
39 nfcv 2319 . . . . . . . 8 β„²π‘₯(𝑦 ∈ π‘Œ ↦ 𝐡)
40 nfmpt1 4098 . . . . . . . 8 β„²π‘₯(π‘₯ ∈ 𝑋 ↦ 𝐴)
4139, 40nfco 4794 . . . . . . 7 β„²π‘₯((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))
42 nfcv 2319 . . . . . . 7 β„²π‘₯𝑧
4341, 42nffv 5527 . . . . . 6 β„²π‘₯(((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘§)
44 nfmpt1 4098 . . . . . . 7 β„²π‘₯(π‘₯ ∈ 𝑋 ↦ 𝐢)
4544, 42nffv 5527 . . . . . 6 β„²π‘₯((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘§)
4643, 45nfeq 2327 . . . . 5 β„²π‘₯(((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘§) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘§)
47 fveq2 5517 . . . . . 6 (π‘₯ = 𝑧 β†’ (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘₯) = (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘§))
48 fveq2 5517 . . . . . 6 (π‘₯ = 𝑧 β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘₯) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘§))
4947, 48eqeq12d 2192 . . . . 5 (π‘₯ = 𝑧 β†’ ((((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘₯) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘₯) ↔ (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘§) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘§)))
5038, 46, 49cbvral 2701 . . . 4 (βˆ€π‘₯ ∈ 𝑋 (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘₯) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘₯) ↔ βˆ€π‘§ ∈ 𝑋 (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘§) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘§))
5137, 50sylib 122 . . 3 (πœ‘ β†’ βˆ€π‘§ ∈ 𝑋 (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘§) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘§))
52 fco 5383 . . . . . 6 (((𝑦 ∈ π‘Œ ↦ 𝐡):π‘ŒβŸΆβˆͺ 𝐿 ∧ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆπ‘Œ) β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)):π‘‹βŸΆβˆͺ 𝐿)
5324, 6, 52syl2anc 411 . . . . 5 (πœ‘ β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)):π‘‹βŸΆβˆͺ 𝐿)
5453ffnd 5368 . . . 4 (πœ‘ β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)) Fn 𝑋)
5528fmpttd 5673 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐢):π‘‹βŸΆβˆͺ 𝐿)
5655ffnd 5368 . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐢) Fn 𝑋)
57 eqfnfv 5615 . . . 4 ((((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)) Fn 𝑋 ∧ (π‘₯ ∈ 𝑋 ↦ 𝐢) Fn 𝑋) β†’ (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)) = (π‘₯ ∈ 𝑋 ↦ 𝐢) ↔ βˆ€π‘§ ∈ 𝑋 (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘§) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘§)))
5854, 56, 57syl2anc 411 . . 3 (πœ‘ β†’ (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)) = (π‘₯ ∈ 𝑋 ↦ 𝐢) ↔ βˆ€π‘§ ∈ 𝑋 (((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴))β€˜π‘§) = ((π‘₯ ∈ 𝑋 ↦ 𝐢)β€˜π‘§)))
5951, 58mpbird 167 . 2 (πœ‘ β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)) = (π‘₯ ∈ 𝑋 ↦ 𝐢))
60 cnco 13760 . . 3 (((π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑦 ∈ π‘Œ ↦ 𝐡) ∈ (𝐾 Cn 𝐿)) β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)) ∈ (𝐽 Cn 𝐿))
614, 17, 60syl2anc 411 . 2 (πœ‘ β†’ ((𝑦 ∈ π‘Œ ↦ 𝐡) ∘ (π‘₯ ∈ 𝑋 ↦ 𝐴)) ∈ (𝐽 Cn 𝐿))
6259, 61eqeltrrd 2255 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐢) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆͺ cuni 3811   ↦ cmpt 4066   ∘ ccom 4632   Fn wfn 5213  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877  Topctop 13536  TopOnctopon 13549   Cn ccn 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13537  df-topon 13550  df-cn 13727
This theorem is referenced by:  cnmpt11f  13823
  Copyright terms: Public domain W3C validator