ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11 GIF version

Theorem cnmpt11 14519
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt11.b (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
cnmpt11.c (𝑦 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt11 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem cnmpt11
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥𝑋)
2 cnmptid.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmpt11.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmpt11.a . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnf2 14441 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
62, 3, 4, 5syl3anc 1249 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
7 eqid 2196 . . . . . . . . . . . 12 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
87fmpt 5712 . . . . . . . . . . 11 (∀𝑥𝑋 𝐴𝑌 ↔ (𝑥𝑋𝐴):𝑋𝑌)
96, 8sylibr 134 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 𝐴𝑌)
109r19.21bi 2585 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐴𝑌)
117fvmpt2 5645 . . . . . . . . 9 ((𝑥𝑋𝐴𝑌) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
121, 10, 11syl2anc 411 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
1312fveq2d 5562 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = ((𝑦𝑌𝐵)‘𝐴))
14 eqid 2196 . . . . . . . 8 (𝑦𝑌𝐵) = (𝑦𝑌𝐵)
15 cnmpt11.c . . . . . . . 8 (𝑦 = 𝐴𝐵 = 𝐶)
1615eleq1d 2265 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐵 𝐿𝐶 𝐿))
17 cnmpt11.b . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
18 cntop2 14438 . . . . . . . . . . . . . 14 ((𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
1917, 18syl 14 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ Top)
20 eqid 2196 . . . . . . . . . . . . . 14 𝐿 = 𝐿
2120toptopon 14254 . . . . . . . . . . . . 13 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
2219, 21sylib 122 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
23 cnf2 14441 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐵):𝑌 𝐿)
243, 22, 17, 23syl3anc 1249 . . . . . . . . . . 11 (𝜑 → (𝑦𝑌𝐵):𝑌 𝐿)
2514fmpt 5712 . . . . . . . . . . 11 (∀𝑦𝑌 𝐵 𝐿 ↔ (𝑦𝑌𝐵):𝑌 𝐿)
2624, 25sylibr 134 . . . . . . . . . 10 (𝜑 → ∀𝑦𝑌 𝐵 𝐿)
2726adantr 276 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 𝐿)
2816, 27, 10rspcdva 2873 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 𝐿)
2914, 15, 10, 28fvmptd3 5655 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘𝐴) = 𝐶)
3013, 29eqtrd 2229 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = 𝐶)
31 fvco3 5632 . . . . . . 7 (((𝑥𝑋𝐴):𝑋𝑌𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
326, 31sylan 283 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
33 eqid 2196 . . . . . . . 8 (𝑥𝑋𝐶) = (𝑥𝑋𝐶)
3433fvmpt2 5645 . . . . . . 7 ((𝑥𝑋𝐶 𝐿) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
351, 28, 34syl2anc 411 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
3630, 32, 353eqtr4d 2239 . . . . 5 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
3736ralrimiva 2570 . . . 4 (𝜑 → ∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
38 nfv 1542 . . . . 5 𝑧(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥)
39 nfcv 2339 . . . . . . . 8 𝑥(𝑦𝑌𝐵)
40 nfmpt1 4126 . . . . . . . 8 𝑥(𝑥𝑋𝐴)
4139, 40nfco 4831 . . . . . . 7 𝑥((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))
42 nfcv 2339 . . . . . . 7 𝑥𝑧
4341, 42nffv 5568 . . . . . 6 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧)
44 nfmpt1 4126 . . . . . . 7 𝑥(𝑥𝑋𝐶)
4544, 42nffv 5568 . . . . . 6 𝑥((𝑥𝑋𝐶)‘𝑧)
4643, 45nfeq 2347 . . . . 5 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)
47 fveq2 5558 . . . . . 6 (𝑥 = 𝑧 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧))
48 fveq2 5558 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑋𝐶)‘𝑥) = ((𝑥𝑋𝐶)‘𝑧))
4947, 48eqeq12d 2211 . . . . 5 (𝑥 = 𝑧 → ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5038, 46, 49cbvral 2725 . . . 4 (∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
5137, 50sylib 122 . . 3 (𝜑 → ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
52 fco 5423 . . . . . 6 (((𝑦𝑌𝐵):𝑌 𝐿 ∧ (𝑥𝑋𝐴):𝑋𝑌) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5324, 6, 52syl2anc 411 . . . . 5 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5453ffnd 5408 . . . 4 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋)
5528fmpttd 5717 . . . . 5 (𝜑 → (𝑥𝑋𝐶):𝑋 𝐿)
5655ffnd 5408 . . . 4 (𝜑 → (𝑥𝑋𝐶) Fn 𝑋)
57 eqfnfv 5659 . . . 4 ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋 ∧ (𝑥𝑋𝐶) Fn 𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5854, 56, 57syl2anc 411 . . 3 (𝜑 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5951, 58mpbird 167 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
60 cnco 14457 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
614, 17, 60syl2anc 411 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
6259, 61eqeltrrd 2274 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475   cuni 3839  cmpt 4094  ccom 4667   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  Topctop 14233  TopOnctopon 14246   Cn ccn 14421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-cn 14424
This theorem is referenced by:  cnmpt11f  14520
  Copyright terms: Public domain W3C validator