Step | Hyp | Ref
| Expression |
1 | | simpr 110 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π₯ β π) |
2 | | cnmptid.j |
. . . . . . . . . . . 12
β’ (π β π½ β (TopOnβπ)) |
3 | | cnmpt11.k |
. . . . . . . . . . . 12
β’ (π β πΎ β (TopOnβπ)) |
4 | | cnmpt11.a |
. . . . . . . . . . . 12
β’ (π β (π₯ β π β¦ π΄) β (π½ Cn πΎ)) |
5 | | cnf2 13744 |
. . . . . . . . . . . 12
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ (π₯ β π β¦ π΄) β (π½ Cn πΎ)) β (π₯ β π β¦ π΄):πβΆπ) |
6 | 2, 3, 4, 5 | syl3anc 1238 |
. . . . . . . . . . 11
β’ (π β (π₯ β π β¦ π΄):πβΆπ) |
7 | | eqid 2177 |
. . . . . . . . . . . 12
β’ (π₯ β π β¦ π΄) = (π₯ β π β¦ π΄) |
8 | 7 | fmpt 5668 |
. . . . . . . . . . 11
β’
(βπ₯ β
π π΄ β π β (π₯ β π β¦ π΄):πβΆπ) |
9 | 6, 8 | sylibr 134 |
. . . . . . . . . 10
β’ (π β βπ₯ β π π΄ β π) |
10 | 9 | r19.21bi 2565 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π΄ β π) |
11 | 7 | fvmpt2 5601 |
. . . . . . . . 9
β’ ((π₯ β π β§ π΄ β π) β ((π₯ β π β¦ π΄)βπ₯) = π΄) |
12 | 1, 10, 11 | syl2anc 411 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β ((π₯ β π β¦ π΄)βπ₯) = π΄) |
13 | 12 | fveq2d 5521 |
. . . . . . 7
β’ ((π β§ π₯ β π) β ((π¦ β π β¦ π΅)β((π₯ β π β¦ π΄)βπ₯)) = ((π¦ β π β¦ π΅)βπ΄)) |
14 | | eqid 2177 |
. . . . . . . 8
β’ (π¦ β π β¦ π΅) = (π¦ β π β¦ π΅) |
15 | | cnmpt11.c |
. . . . . . . 8
β’ (π¦ = π΄ β π΅ = πΆ) |
16 | 15 | eleq1d 2246 |
. . . . . . . . 9
β’ (π¦ = π΄ β (π΅ β βͺ πΏ β πΆ β βͺ πΏ)) |
17 | | cnmpt11.b |
. . . . . . . . . . . . . 14
β’ (π β (π¦ β π β¦ π΅) β (πΎ Cn πΏ)) |
18 | | cntop2 13741 |
. . . . . . . . . . . . . 14
β’ ((π¦ β π β¦ π΅) β (πΎ Cn πΏ) β πΏ β Top) |
19 | 17, 18 | syl 14 |
. . . . . . . . . . . . 13
β’ (π β πΏ β Top) |
20 | | eqid 2177 |
. . . . . . . . . . . . . 14
β’ βͺ πΏ =
βͺ πΏ |
21 | 20 | toptopon 13557 |
. . . . . . . . . . . . 13
β’ (πΏ β Top β πΏ β (TopOnββͺ πΏ)) |
22 | 19, 21 | sylib 122 |
. . . . . . . . . . . 12
β’ (π β πΏ β (TopOnββͺ πΏ)) |
23 | | cnf2 13744 |
. . . . . . . . . . . 12
β’ ((πΎ β (TopOnβπ) β§ πΏ β (TopOnββͺ πΏ)
β§ (π¦ β π β¦ π΅) β (πΎ Cn πΏ)) β (π¦ β π β¦ π΅):πβΆβͺ πΏ) |
24 | 3, 22, 17, 23 | syl3anc 1238 |
. . . . . . . . . . 11
β’ (π β (π¦ β π β¦ π΅):πβΆβͺ πΏ) |
25 | 14 | fmpt 5668 |
. . . . . . . . . . 11
β’
(βπ¦ β
π π΅ β βͺ πΏ β (π¦ β π β¦ π΅):πβΆβͺ πΏ) |
26 | 24, 25 | sylibr 134 |
. . . . . . . . . 10
β’ (π β βπ¦ β π π΅ β βͺ πΏ) |
27 | 26 | adantr 276 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β βπ¦ β π π΅ β βͺ πΏ) |
28 | 16, 27, 10 | rspcdva 2848 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β πΆ β βͺ πΏ) |
29 | 14, 15, 10, 28 | fvmptd3 5611 |
. . . . . . 7
β’ ((π β§ π₯ β π) β ((π¦ β π β¦ π΅)βπ΄) = πΆ) |
30 | 13, 29 | eqtrd 2210 |
. . . . . 6
β’ ((π β§ π₯ β π) β ((π¦ β π β¦ π΅)β((π₯ β π β¦ π΄)βπ₯)) = πΆ) |
31 | | fvco3 5589 |
. . . . . . 7
β’ (((π₯ β π β¦ π΄):πβΆπ β§ π₯ β π) β (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ₯) = ((π¦ β π β¦ π΅)β((π₯ β π β¦ π΄)βπ₯))) |
32 | 6, 31 | sylan 283 |
. . . . . 6
β’ ((π β§ π₯ β π) β (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ₯) = ((π¦ β π β¦ π΅)β((π₯ β π β¦ π΄)βπ₯))) |
33 | | eqid 2177 |
. . . . . . . 8
β’ (π₯ β π β¦ πΆ) = (π₯ β π β¦ πΆ) |
34 | 33 | fvmpt2 5601 |
. . . . . . 7
β’ ((π₯ β π β§ πΆ β βͺ πΏ) β ((π₯ β π β¦ πΆ)βπ₯) = πΆ) |
35 | 1, 28, 34 | syl2anc 411 |
. . . . . 6
β’ ((π β§ π₯ β π) β ((π₯ β π β¦ πΆ)βπ₯) = πΆ) |
36 | 30, 32, 35 | 3eqtr4d 2220 |
. . . . 5
β’ ((π β§ π₯ β π) β (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ₯) = ((π₯ β π β¦ πΆ)βπ₯)) |
37 | 36 | ralrimiva 2550 |
. . . 4
β’ (π β βπ₯ β π (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ₯) = ((π₯ β π β¦ πΆ)βπ₯)) |
38 | | nfv 1528 |
. . . . 5
β’
β²π§(((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ₯) = ((π₯ β π β¦ πΆ)βπ₯) |
39 | | nfcv 2319 |
. . . . . . . 8
β’
β²π₯(π¦ β π β¦ π΅) |
40 | | nfmpt1 4098 |
. . . . . . . 8
β’
β²π₯(π₯ β π β¦ π΄) |
41 | 39, 40 | nfco 4794 |
. . . . . . 7
β’
β²π₯((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)) |
42 | | nfcv 2319 |
. . . . . . 7
β’
β²π₯π§ |
43 | 41, 42 | nffv 5527 |
. . . . . 6
β’
β²π₯(((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ§) |
44 | | nfmpt1 4098 |
. . . . . . 7
β’
β²π₯(π₯ β π β¦ πΆ) |
45 | 44, 42 | nffv 5527 |
. . . . . 6
β’
β²π₯((π₯ β π β¦ πΆ)βπ§) |
46 | 43, 45 | nfeq 2327 |
. . . . 5
β’
β²π₯(((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ§) = ((π₯ β π β¦ πΆ)βπ§) |
47 | | fveq2 5517 |
. . . . . 6
β’ (π₯ = π§ β (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ₯) = (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ§)) |
48 | | fveq2 5517 |
. . . . . 6
β’ (π₯ = π§ β ((π₯ β π β¦ πΆ)βπ₯) = ((π₯ β π β¦ πΆ)βπ§)) |
49 | 47, 48 | eqeq12d 2192 |
. . . . 5
β’ (π₯ = π§ β ((((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ₯) = ((π₯ β π β¦ πΆ)βπ₯) β (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ§) = ((π₯ β π β¦ πΆ)βπ§))) |
50 | 38, 46, 49 | cbvral 2701 |
. . . 4
β’
(βπ₯ β
π (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ₯) = ((π₯ β π β¦ πΆ)βπ₯) β βπ§ β π (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ§) = ((π₯ β π β¦ πΆ)βπ§)) |
51 | 37, 50 | sylib 122 |
. . 3
β’ (π β βπ§ β π (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ§) = ((π₯ β π β¦ πΆ)βπ§)) |
52 | | fco 5383 |
. . . . . 6
β’ (((π¦ β π β¦ π΅):πβΆβͺ πΏ β§ (π₯ β π β¦ π΄):πβΆπ) β ((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)):πβΆβͺ πΏ) |
53 | 24, 6, 52 | syl2anc 411 |
. . . . 5
β’ (π β ((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)):πβΆβͺ πΏ) |
54 | 53 | ffnd 5368 |
. . . 4
β’ (π β ((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)) Fn π) |
55 | 28 | fmpttd 5673 |
. . . . 5
β’ (π β (π₯ β π β¦ πΆ):πβΆβͺ πΏ) |
56 | 55 | ffnd 5368 |
. . . 4
β’ (π β (π₯ β π β¦ πΆ) Fn π) |
57 | | eqfnfv 5615 |
. . . 4
β’ ((((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)) Fn π β§ (π₯ β π β¦ πΆ) Fn π) β (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)) = (π₯ β π β¦ πΆ) β βπ§ β π (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ§) = ((π₯ β π β¦ πΆ)βπ§))) |
58 | 54, 56, 57 | syl2anc 411 |
. . 3
β’ (π β (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)) = (π₯ β π β¦ πΆ) β βπ§ β π (((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄))βπ§) = ((π₯ β π β¦ πΆ)βπ§))) |
59 | 51, 58 | mpbird 167 |
. 2
β’ (π β ((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)) = (π₯ β π β¦ πΆ)) |
60 | | cnco 13760 |
. . 3
β’ (((π₯ β π β¦ π΄) β (π½ Cn πΎ) β§ (π¦ β π β¦ π΅) β (πΎ Cn πΏ)) β ((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)) β (π½ Cn πΏ)) |
61 | 4, 17, 60 | syl2anc 411 |
. 2
β’ (π β ((π¦ β π β¦ π΅) β (π₯ β π β¦ π΄)) β (π½ Cn πΏ)) |
62 | 59, 61 | eqeltrrd 2255 |
1
β’ (π β (π₯ β π β¦ πΆ) β (π½ Cn πΏ)) |