Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
2 | | cnmptid.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
3 | | cnmpt11.k |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
4 | | cnmpt11.a |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
5 | | cnf2 12999 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
6 | 2, 3, 4, 5 | syl3anc 1233 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
7 | | eqid 2170 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
8 | 7 | fmpt 5646 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝑋 𝐴 ∈ 𝑌 ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
9 | 6, 8 | sylibr 133 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌) |
10 | 9 | r19.21bi 2558 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
11 | 7 | fvmpt2 5579 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
12 | 1, 10, 11 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
13 | 12 | fveq2d 5500 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐵)‘((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑦 ∈ 𝑌 ↦ 𝐵)‘𝐴)) |
14 | | eqid 2170 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑦 ∈ 𝑌 ↦ 𝐵) |
15 | | cnmpt11.c |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → 𝐵 = 𝐶) |
16 | 15 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝐵 ∈ ∪ 𝐿 ↔ 𝐶 ∈ ∪ 𝐿)) |
17 | | cnmpt11.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) |
18 | | cntop2 12996 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top) |
19 | 17, 18 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ Top) |
20 | | eqid 2170 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐿 =
∪ 𝐿 |
21 | 20 | toptopon 12810 |
. . . . . . . . . . . . 13
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
22 | 19, 21 | sylib 121 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
23 | | cnf2 12999 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐵):𝑌⟶∪ 𝐿) |
24 | 3, 22, 17, 23 | syl3anc 1233 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐵):𝑌⟶∪ 𝐿) |
25 | 14 | fmpt 5646 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝑌 𝐵 ∈ ∪ 𝐿 ↔ (𝑦 ∈ 𝑌 ↦ 𝐵):𝑌⟶∪ 𝐿) |
26 | 24, 25 | sylibr 133 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿) |
27 | 26 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝐿) |
28 | 16, 27, 10 | rspcdva 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ∪ 𝐿) |
29 | 14, 15, 10, 28 | fvmptd3 5589 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐵)‘𝐴) = 𝐶) |
30 | 13, 29 | eqtrd 2203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐵)‘((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = 𝐶) |
31 | | fvco3 5567 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌 ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑦 ∈ 𝑌 ↦ 𝐵)‘((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥))) |
32 | 6, 31 | sylan 281 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑦 ∈ 𝑌 ↦ 𝐵)‘((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥))) |
33 | | eqid 2170 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 ↦ 𝐶) = (𝑥 ∈ 𝑋 ↦ 𝐶) |
34 | 33 | fvmpt2 5579 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐶 ∈ ∪ 𝐿) → ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) = 𝐶) |
35 | 1, 28, 34 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) = 𝐶) |
36 | 30, 32, 35 | 3eqtr4d 2213 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥)) |
37 | 36 | ralrimiva 2543 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥)) |
38 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑧(((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) |
39 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑦 ∈ 𝑌 ↦ 𝐵) |
40 | | nfmpt1 4082 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋 ↦ 𝐴) |
41 | 39, 40 | nfco 4776 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) |
42 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
43 | 41, 42 | nffv 5506 |
. . . . . 6
⊢
Ⅎ𝑥(((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) |
44 | | nfmpt1 4082 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋 ↦ 𝐶) |
45 | 44, 42 | nffv 5506 |
. . . . . 6
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧) |
46 | 43, 45 | nfeq 2320 |
. . . . 5
⊢
Ⅎ𝑥(((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧) |
47 | | fveq2 5496 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧)) |
48 | | fveq2 5496 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧)) |
49 | 47, 48 | eqeq12d 2185 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) ↔ (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧))) |
50 | 38, 46, 49 | cbvral 2692 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑥) ↔ ∀𝑧 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧)) |
51 | 37, 50 | sylib 121 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧)) |
52 | | fco 5363 |
. . . . . 6
⊢ (((𝑦 ∈ 𝑌 ↦ 𝐵):𝑌⟶∪ 𝐿 ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶∪ 𝐿) |
53 | 24, 6, 52 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶∪ 𝐿) |
54 | 53 | ffnd 5348 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) Fn 𝑋) |
55 | 28 | fmpttd 5651 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶):𝑋⟶∪ 𝐿) |
56 | 55 | ffnd 5348 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) Fn 𝑋) |
57 | | eqfnfv 5593 |
. . . 4
⊢ ((((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) Fn 𝑋 ∧ (𝑥 ∈ 𝑋 ↦ 𝐶) Fn 𝑋) → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶) ↔ ∀𝑧 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧))) |
58 | 54, 56, 57 | syl2anc 409 |
. . 3
⊢ (𝜑 → (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶) ↔ ∀𝑧 ∈ 𝑋 (((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑧) = ((𝑥 ∈ 𝑋 ↦ 𝐶)‘𝑧))) |
59 | 51, 58 | mpbird 166 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
60 | | cnco 13015 |
. . 3
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ (𝐽 Cn 𝐿)) |
61 | 4, 17, 60 | syl2anc 409 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ (𝐽 Cn 𝐿)) |
62 | 59, 61 | eqeltrrd 2248 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) |