![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isummulc2 | GIF version |
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumcl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumcl.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumcl.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
summulc.6 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
isummulc2 | ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumcl.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumcl.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | eqidd 2194 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) | |
4 | summulc.6 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
6 | isumcl.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
7 | 5, 6 | mulcld 8042 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · 𝐴) ∈ ℂ) |
8 | 7 | fmpttd 5714 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ) |
9 | 8 | ffvelcdmda 5694 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ) |
10 | isumcl.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
11 | isumcl.5 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
12 | 1, 2, 10, 6, 11 | isumclim2 11568 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
13 | 10, 6 | eqeltrd 2270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
14 | 13 | ralrimiva 2567 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
15 | fveq2 5555 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
16 | 15 | eleq1d 2262 | . . . . . 6 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
17 | 16 | rspccva 2864 | . . . . 5 ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
18 | 14, 17 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
19 | simpr 110 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
20 | eqid 2193 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) = (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) | |
21 | 20 | fvmpt2 5642 | . . . . . . . 8 ⊢ ((𝑘 ∈ 𝑍 ∧ (𝐵 · 𝐴) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
22 | 19, 7, 21 | syl2anc 411 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
23 | 10 | oveq2d 5935 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · (𝐹‘𝑘)) = (𝐵 · 𝐴)) |
24 | 22, 23 | eqtr4d 2229 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
25 | 24 | ralrimiva 2567 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
26 | nffvmpt1 5566 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) | |
27 | 26 | nfeq1 2346 | . . . . . 6 ⊢ Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)) |
28 | fveq2 5555 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) | |
29 | 15 | oveq2d 5935 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝐵 · (𝐹‘𝑘)) = (𝐵 · (𝐹‘𝑚))) |
30 | 28, 29 | eqeq12d 2208 | . . . . . 6 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) ↔ ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
31 | 27, 30 | rspc 2859 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
32 | 25, 31 | mpan9 281 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚))) |
33 | 1, 2, 4, 12, 18, 32 | isermulc2 11486 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
34 | 1, 2, 3, 9, 33 | isumclim 11567 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
35 | 7 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐵 · 𝐴) ∈ ℂ) |
36 | sumfct 11520 | . . 3 ⊢ (∀𝑘 ∈ 𝑍 (𝐵 · 𝐴) ∈ ℂ → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) | |
37 | 35, 36 | syl 14 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
38 | 34, 37 | eqtr3d 2228 | 1 ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ↦ cmpt 4091 dom cdm 4660 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 + caddc 7877 · cmul 7879 ℤcz 9320 ℤ≥cuz 9595 seqcseq 10521 ⇝ cli 11424 Σcsu 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 |
This theorem is referenced by: isummulc1 11573 trirecip 11647 geoisum1c 11666 |
Copyright terms: Public domain | W3C validator |