ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isummulc2 GIF version

Theorem isummulc2 11195
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1 𝑍 = (ℤ𝑀)
isumcl.2 (𝜑𝑀 ∈ ℤ)
isumcl.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumcl.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumcl.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
summulc.6 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
isummulc2 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isummulc2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isumcl.1 . . 3 𝑍 = (ℤ𝑀)
2 isumcl.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 eqidd 2140 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
4 summulc.6 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
54adantr 274 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
6 isumcl.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
75, 6mulcld 7786 . . . . 5 ((𝜑𝑘𝑍) → (𝐵 · 𝐴) ∈ ℂ)
87fmpttd 5575 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ)
98ffvelrnda 5555 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ)
10 isumcl.3 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
11 isumcl.5 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 10, 6, 11isumclim2 11191 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
1310, 6eqeltrd 2216 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1413ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
15 fveq2 5421 . . . . . . 7 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1615eleq1d 2208 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
1716rspccva 2788 . . . . 5 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
1814, 17sylan 281 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
19 simpr 109 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘𝑍)
20 eqid 2139 . . . . . . . . 9 (𝑘𝑍 ↦ (𝐵 · 𝐴)) = (𝑘𝑍 ↦ (𝐵 · 𝐴))
2120fvmpt2 5504 . . . . . . . 8 ((𝑘𝑍 ∧ (𝐵 · 𝐴) ∈ ℂ) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2219, 7, 21syl2anc 408 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2310oveq2d 5790 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐵 · (𝐹𝑘)) = (𝐵 · 𝐴))
2422, 23eqtr4d 2175 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
2524ralrimiva 2505 . . . . 5 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
26 nffvmpt1 5432 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚)
2726nfeq1 2291 . . . . . 6 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))
28 fveq2 5421 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
2915oveq2d 5790 . . . . . . 7 (𝑘 = 𝑚 → (𝐵 · (𝐹𝑘)) = (𝐵 · (𝐹𝑚)))
3028, 29eqeq12d 2154 . . . . . 6 (𝑘 = 𝑚 → (((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) ↔ ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3127, 30rspc 2783 . . . . 5 (𝑚𝑍 → (∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3225, 31mpan9 279 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚)))
331, 2, 4, 12, 18, 32isermulc2 11109 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘𝑍 𝐴))
341, 2, 3, 9, 33isumclim 11190 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘𝑍 𝐴))
357ralrimiva 2505 . . 3 (𝜑 → ∀𝑘𝑍 (𝐵 · 𝐴) ∈ ℂ)
36 sumfct 11143 . . 3 (∀𝑘𝑍 (𝐵 · 𝐴) ∈ ℂ → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴))
3735, 36syl 14 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴))
3834, 37eqtr3d 2174 1 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  cmpt 3989  dom cdm 4539  cfv 5123  (class class class)co 5774  cc 7618   + caddc 7623   · cmul 7625  cz 9054  cuz 9326  seqcseq 10218  cli 11047  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  isummulc1  11196  trirecip  11270  geoisum1c  11289
  Copyright terms: Public domain W3C validator