ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isummulc2 GIF version

Theorem isummulc2 11300
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1 𝑍 = (ℤ𝑀)
isumcl.2 (𝜑𝑀 ∈ ℤ)
isumcl.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumcl.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumcl.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
summulc.6 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
isummulc2 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isummulc2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isumcl.1 . . 3 𝑍 = (ℤ𝑀)
2 isumcl.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 eqidd 2155 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
4 summulc.6 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
54adantr 274 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
6 isumcl.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
75, 6mulcld 7877 . . . . 5 ((𝜑𝑘𝑍) → (𝐵 · 𝐴) ∈ ℂ)
87fmpttd 5615 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ)
98ffvelrnda 5595 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ)
10 isumcl.3 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
11 isumcl.5 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 10, 6, 11isumclim2 11296 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
1310, 6eqeltrd 2231 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1413ralrimiva 2527 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
15 fveq2 5461 . . . . . . 7 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1615eleq1d 2223 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
1716rspccva 2812 . . . . 5 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
1814, 17sylan 281 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
19 simpr 109 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘𝑍)
20 eqid 2154 . . . . . . . . 9 (𝑘𝑍 ↦ (𝐵 · 𝐴)) = (𝑘𝑍 ↦ (𝐵 · 𝐴))
2120fvmpt2 5544 . . . . . . . 8 ((𝑘𝑍 ∧ (𝐵 · 𝐴) ∈ ℂ) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2219, 7, 21syl2anc 409 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2310oveq2d 5830 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐵 · (𝐹𝑘)) = (𝐵 · 𝐴))
2422, 23eqtr4d 2190 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
2524ralrimiva 2527 . . . . 5 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
26 nffvmpt1 5472 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚)
2726nfeq1 2306 . . . . . 6 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))
28 fveq2 5461 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
2915oveq2d 5830 . . . . . . 7 (𝑘 = 𝑚 → (𝐵 · (𝐹𝑘)) = (𝐵 · (𝐹𝑚)))
3028, 29eqeq12d 2169 . . . . . 6 (𝑘 = 𝑚 → (((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) ↔ ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3127, 30rspc 2807 . . . . 5 (𝑚𝑍 → (∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3225, 31mpan9 279 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚)))
331, 2, 4, 12, 18, 32isermulc2 11214 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘𝑍 𝐴))
341, 2, 3, 9, 33isumclim 11295 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘𝑍 𝐴))
357ralrimiva 2527 . . 3 (𝜑 → ∀𝑘𝑍 (𝐵 · 𝐴) ∈ ℂ)
36 sumfct 11248 . . 3 (∀𝑘𝑍 (𝐵 · 𝐴) ∈ ℂ → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴))
3735, 36syl 14 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴))
3834, 37eqtr3d 2189 1 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 2125  wral 2432  cmpt 4021  dom cdm 4579  cfv 5163  (class class class)co 5814  cc 7709   + caddc 7714   · cmul 7716  cz 9146  cuz 9418  seqcseq 10322  cli 11152  Σcsu 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228
This theorem is referenced by:  isummulc1  11301  trirecip  11375  geoisum1c  11394
  Copyright terms: Public domain W3C validator