Step | Hyp | Ref
| Expression |
1 | | isumcl.1 |
. . 3
β’ π =
(β€β₯βπ) |
2 | | isumcl.2 |
. . 3
β’ (π β π β β€) |
3 | | eqidd 2178 |
. . 3
β’ ((π β§ π β π) β ((π β π β¦ (π΅ Β· π΄))βπ) = ((π β π β¦ (π΅ Β· π΄))βπ)) |
4 | | summulc.6 |
. . . . . . 7
β’ (π β π΅ β β) |
5 | 4 | adantr 276 |
. . . . . 6
β’ ((π β§ π β π) β π΅ β β) |
6 | | isumcl.4 |
. . . . . 6
β’ ((π β§ π β π) β π΄ β β) |
7 | 5, 6 | mulcld 7980 |
. . . . 5
β’ ((π β§ π β π) β (π΅ Β· π΄) β β) |
8 | 7 | fmpttd 5673 |
. . . 4
β’ (π β (π β π β¦ (π΅ Β· π΄)):πβΆβ) |
9 | 8 | ffvelcdmda 5653 |
. . 3
β’ ((π β§ π β π) β ((π β π β¦ (π΅ Β· π΄))βπ) β β) |
10 | | isumcl.3 |
. . . . 5
β’ ((π β§ π β π) β (πΉβπ) = π΄) |
11 | | isumcl.5 |
. . . . 5
β’ (π β seqπ( + , πΉ) β dom β ) |
12 | 1, 2, 10, 6, 11 | isumclim2 11432 |
. . . 4
β’ (π β seqπ( + , πΉ) β Ξ£π β π π΄) |
13 | 10, 6 | eqeltrd 2254 |
. . . . . 6
β’ ((π β§ π β π) β (πΉβπ) β β) |
14 | 13 | ralrimiva 2550 |
. . . . 5
β’ (π β βπ β π (πΉβπ) β β) |
15 | | fveq2 5517 |
. . . . . . 7
β’ (π = π β (πΉβπ) = (πΉβπ)) |
16 | 15 | eleq1d 2246 |
. . . . . 6
β’ (π = π β ((πΉβπ) β β β (πΉβπ) β β)) |
17 | 16 | rspccva 2842 |
. . . . 5
β’
((βπ β
π (πΉβπ) β β β§ π β π) β (πΉβπ) β β) |
18 | 14, 17 | sylan 283 |
. . . 4
β’ ((π β§ π β π) β (πΉβπ) β β) |
19 | | simpr 110 |
. . . . . . . 8
β’ ((π β§ π β π) β π β π) |
20 | | eqid 2177 |
. . . . . . . . 9
β’ (π β π β¦ (π΅ Β· π΄)) = (π β π β¦ (π΅ Β· π΄)) |
21 | 20 | fvmpt2 5601 |
. . . . . . . 8
β’ ((π β π β§ (π΅ Β· π΄) β β) β ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· π΄)) |
22 | 19, 7, 21 | syl2anc 411 |
. . . . . . 7
β’ ((π β§ π β π) β ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· π΄)) |
23 | 10 | oveq2d 5893 |
. . . . . . 7
β’ ((π β§ π β π) β (π΅ Β· (πΉβπ)) = (π΅ Β· π΄)) |
24 | 22, 23 | eqtr4d 2213 |
. . . . . 6
β’ ((π β§ π β π) β ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· (πΉβπ))) |
25 | 24 | ralrimiva 2550 |
. . . . 5
β’ (π β βπ β π ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· (πΉβπ))) |
26 | | nffvmpt1 5528 |
. . . . . . 7
β’
β²π((π β π β¦ (π΅ Β· π΄))βπ) |
27 | 26 | nfeq1 2329 |
. . . . . 6
β’
β²π((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· (πΉβπ)) |
28 | | fveq2 5517 |
. . . . . . 7
β’ (π = π β ((π β π β¦ (π΅ Β· π΄))βπ) = ((π β π β¦ (π΅ Β· π΄))βπ)) |
29 | 15 | oveq2d 5893 |
. . . . . . 7
β’ (π = π β (π΅ Β· (πΉβπ)) = (π΅ Β· (πΉβπ))) |
30 | 28, 29 | eqeq12d 2192 |
. . . . . 6
β’ (π = π β (((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· (πΉβπ)) β ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· (πΉβπ)))) |
31 | 27, 30 | rspc 2837 |
. . . . 5
β’ (π β π β (βπ β π ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· (πΉβπ)) β ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· (πΉβπ)))) |
32 | 25, 31 | mpan9 281 |
. . . 4
β’ ((π β§ π β π) β ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· (πΉβπ))) |
33 | 1, 2, 4, 12, 18, 32 | isermulc2 11350 |
. . 3
β’ (π β seqπ( + , (π β π β¦ (π΅ Β· π΄))) β (π΅ Β· Ξ£π β π π΄)) |
34 | 1, 2, 3, 9, 33 | isumclim 11431 |
. 2
β’ (π β Ξ£π β π ((π β π β¦ (π΅ Β· π΄))βπ) = (π΅ Β· Ξ£π β π π΄)) |
35 | 7 | ralrimiva 2550 |
. . 3
β’ (π β βπ β π (π΅ Β· π΄) β β) |
36 | | sumfct 11384 |
. . 3
β’
(βπ β
π (π΅ Β· π΄) β β β Ξ£π β π ((π β π β¦ (π΅ Β· π΄))βπ) = Ξ£π β π (π΅ Β· π΄)) |
37 | 35, 36 | syl 14 |
. 2
β’ (π β Ξ£π β π ((π β π β¦ (π΅ Β· π΄))βπ) = Ξ£π β π (π΅ Β· π΄)) |
38 | 34, 37 | eqtr3d 2212 |
1
β’ (π β (π΅ Β· Ξ£π β π π΄) = Ξ£π β π (π΅ Β· π΄)) |