Step | Hyp | Ref
| Expression |
1 | | isumcl.1 |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | isumcl.2 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | eqidd 2089 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) |
4 | | summulc.6 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | 4 | adantr 270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
6 | | isumcl.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
7 | 5, 6 | mulcld 7508 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · 𝐴) ∈ ℂ) |
8 | 7 | fmpttd 5453 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ) |
9 | 8 | ffvelrnda 5434 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ) |
10 | 1 | eleq2i 2154 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑍 ↔ 𝑥 ∈ (ℤ≥‘𝑀)) |
11 | 10 | biimpri 131 |
. . . . . . . 8
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ 𝑍) |
12 | 11 | adantl 271 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ 𝑍) |
13 | 4 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝐵 ∈ ℂ) |
14 | 6 | ralrimiva 2446 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
15 | 14 | adantr 270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
16 | | nfcsb1v 2963 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐴 |
17 | 16 | nfel1 2239 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐴 ∈ ℂ |
18 | | csbeq1a 2941 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → 𝐴 = ⦋𝑥 / 𝑘⦌𝐴) |
19 | 18 | eleq1d 2156 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝐴 ∈ ℂ ↔ ⦋𝑥 / 𝑘⦌𝐴 ∈ ℂ)) |
20 | 17, 19 | rspc 2716 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋𝑥 / 𝑘⦌𝐴 ∈ ℂ)) |
21 | 12, 15, 20 | sylc 61 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ⦋𝑥 / 𝑘⦌𝐴 ∈ ℂ) |
22 | 13, 21 | mulcld 7508 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐵 · ⦋𝑥 / 𝑘⦌𝐴) ∈ ℂ) |
23 | | nfcv 2228 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑥 |
24 | | nfcv 2228 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐵 |
25 | | nfcv 2228 |
. . . . . . . . 9
⊢
Ⅎ𝑘
· |
26 | 24, 25, 16 | nfov 5679 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝐵 · ⦋𝑥 / 𝑘⦌𝐴) |
27 | 18 | oveq2d 5668 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝐵 · 𝐴) = (𝐵 · ⦋𝑥 / 𝑘⦌𝐴)) |
28 | | eqid 2088 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) = (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) |
29 | 23, 26, 27, 28 | fvmptf 5395 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑍 ∧ (𝐵 · ⦋𝑥 / 𝑘⦌𝐴) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑥) = (𝐵 · ⦋𝑥 / 𝑘⦌𝐴)) |
30 | 12, 22, 29 | syl2anc 403 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑥) = (𝐵 · ⦋𝑥 / 𝑘⦌𝐴)) |
31 | 30, 22 | eqeltrd 2164 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑥) ∈ ℂ) |
32 | 2, 31 | iseqseq3 9902 |
. . . 4
⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)), ℂ) = seq𝑀( + , (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)))) |
33 | | fveq2 5305 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
34 | 33 | eleq1d 2156 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑥) ∈ ℂ)) |
35 | | isumcl.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
36 | 35, 6 | eqeltrd 2164 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
37 | 36 | ralrimiva 2446 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
38 | 37 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
39 | 34, 38, 12 | rspcdva 2727 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℂ) |
40 | 2, 39 | iseqseq3 9902 |
. . . . . 6
⊢ (𝜑 → seq𝑀( + , 𝐹, ℂ) = seq𝑀( + , 𝐹)) |
41 | | isumcl.5 |
. . . . . . 7
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
42 | 1, 2, 35, 6, 41 | isumclim2 10816 |
. . . . . 6
⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
43 | 40, 42 | eqbrtrd 3865 |
. . . . 5
⊢ (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
44 | | fveq2 5305 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
45 | 44 | eleq1d 2156 |
. . . . . 6
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
46 | 37 | adantr 270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
47 | | simpr 108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) |
48 | 45, 46, 47 | rspcdva 2727 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
49 | | simpr 108 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
50 | 28 | fvmpt2 5386 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑍 ∧ (𝐵 · 𝐴) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
51 | 49, 7, 50 | syl2anc 403 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
52 | 35 | oveq2d 5668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · (𝐹‘𝑘)) = (𝐵 · 𝐴)) |
53 | 51, 52 | eqtr4d 2123 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
54 | 53 | ralrimiva 2446 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
55 | | nffvmpt1 5316 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) |
56 | 55 | nfeq1 2238 |
. . . . . . 7
⊢
Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)) |
57 | | fveq2 5305 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) |
58 | 44 | oveq2d 5668 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝐵 · (𝐹‘𝑘)) = (𝐵 · (𝐹‘𝑚))) |
59 | 57, 58 | eqeq12d 2102 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) ↔ ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
60 | 56, 59 | rspc 2716 |
. . . . . 6
⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
61 | 54, 60 | mpan9 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚))) |
62 | 1, 2, 4, 43, 48, 61 | iisermulc2 10728 |
. . . 4
⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)), ℂ) ⇝ (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
63 | 32, 62 | eqbrtrrd 3867 |
. . 3
⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
64 | 1, 2, 3, 9, 63 | isumclim 10815 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
65 | 7 | ralrimiva 2446 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐵 · 𝐴) ∈ ℂ) |
66 | | sumfct 10763 |
. . 3
⊢
(∀𝑘 ∈
𝑍 (𝐵 · 𝐴) ∈ ℂ → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
67 | 65, 66 | syl 14 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
68 | 64, 67 | eqtr3d 2122 |
1
⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |