ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isummulc2 GIF version

Theorem isummulc2 11572
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1 𝑍 = (ℤ𝑀)
isumcl.2 (𝜑𝑀 ∈ ℤ)
isumcl.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumcl.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumcl.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
summulc.6 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
isummulc2 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isummulc2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isumcl.1 . . 3 𝑍 = (ℤ𝑀)
2 isumcl.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 eqidd 2194 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
4 summulc.6 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
54adantr 276 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
6 isumcl.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
75, 6mulcld 8042 . . . . 5 ((𝜑𝑘𝑍) → (𝐵 · 𝐴) ∈ ℂ)
87fmpttd 5714 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ)
98ffvelcdmda 5694 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ)
10 isumcl.3 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
11 isumcl.5 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 10, 6, 11isumclim2 11568 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
1310, 6eqeltrd 2270 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1413ralrimiva 2567 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
15 fveq2 5555 . . . . . . 7 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1615eleq1d 2262 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
1716rspccva 2864 . . . . 5 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
1814, 17sylan 283 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
19 simpr 110 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘𝑍)
20 eqid 2193 . . . . . . . . 9 (𝑘𝑍 ↦ (𝐵 · 𝐴)) = (𝑘𝑍 ↦ (𝐵 · 𝐴))
2120fvmpt2 5642 . . . . . . . 8 ((𝑘𝑍 ∧ (𝐵 · 𝐴) ∈ ℂ) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2219, 7, 21syl2anc 411 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2310oveq2d 5935 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐵 · (𝐹𝑘)) = (𝐵 · 𝐴))
2422, 23eqtr4d 2229 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
2524ralrimiva 2567 . . . . 5 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
26 nffvmpt1 5566 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚)
2726nfeq1 2346 . . . . . 6 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))
28 fveq2 5555 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
2915oveq2d 5935 . . . . . . 7 (𝑘 = 𝑚 → (𝐵 · (𝐹𝑘)) = (𝐵 · (𝐹𝑚)))
3028, 29eqeq12d 2208 . . . . . 6 (𝑘 = 𝑚 → (((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) ↔ ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3127, 30rspc 2859 . . . . 5 (𝑚𝑍 → (∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3225, 31mpan9 281 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚)))
331, 2, 4, 12, 18, 32isermulc2 11486 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘𝑍 𝐴))
341, 2, 3, 9, 33isumclim 11567 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘𝑍 𝐴))
357ralrimiva 2567 . . 3 (𝜑 → ∀𝑘𝑍 (𝐵 · 𝐴) ∈ ℂ)
36 sumfct 11520 . . 3 (∀𝑘𝑍 (𝐵 · 𝐴) ∈ ℂ → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴))
3735, 36syl 14 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴))
3834, 37eqtr3d 2228 1 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  cmpt 4091  dom cdm 4660  cfv 5255  (class class class)co 5919  cc 7872   + caddc 7877   · cmul 7879  cz 9320  cuz 9595  seqcseq 10521  cli 11424  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  isummulc1  11573  trirecip  11647  geoisum1c  11666
  Copyright terms: Public domain W3C validator