ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isummulc2 GIF version

Theorem isummulc2 11227
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1 𝑍 = (ℤ𝑀)
isumcl.2 (𝜑𝑀 ∈ ℤ)
isumcl.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumcl.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumcl.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
summulc.6 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
isummulc2 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isummulc2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isumcl.1 . . 3 𝑍 = (ℤ𝑀)
2 isumcl.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 eqidd 2141 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
4 summulc.6 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
54adantr 274 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
6 isumcl.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
75, 6mulcld 7810 . . . . 5 ((𝜑𝑘𝑍) → (𝐵 · 𝐴) ∈ ℂ)
87fmpttd 5583 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ)
98ffvelrnda 5563 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ)
10 isumcl.3 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
11 isumcl.5 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 10, 6, 11isumclim2 11223 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
1310, 6eqeltrd 2217 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1413ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
15 fveq2 5429 . . . . . . 7 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1615eleq1d 2209 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
1716rspccva 2792 . . . . 5 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
1814, 17sylan 281 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
19 simpr 109 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘𝑍)
20 eqid 2140 . . . . . . . . 9 (𝑘𝑍 ↦ (𝐵 · 𝐴)) = (𝑘𝑍 ↦ (𝐵 · 𝐴))
2120fvmpt2 5512 . . . . . . . 8 ((𝑘𝑍 ∧ (𝐵 · 𝐴) ∈ ℂ) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2219, 7, 21syl2anc 409 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2310oveq2d 5798 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐵 · (𝐹𝑘)) = (𝐵 · 𝐴))
2422, 23eqtr4d 2176 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
2524ralrimiva 2508 . . . . 5 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
26 nffvmpt1 5440 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚)
2726nfeq1 2292 . . . . . 6 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))
28 fveq2 5429 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
2915oveq2d 5798 . . . . . . 7 (𝑘 = 𝑚 → (𝐵 · (𝐹𝑘)) = (𝐵 · (𝐹𝑚)))
3028, 29eqeq12d 2155 . . . . . 6 (𝑘 = 𝑚 → (((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) ↔ ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3127, 30rspc 2787 . . . . 5 (𝑚𝑍 → (∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3225, 31mpan9 279 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚)))
331, 2, 4, 12, 18, 32isermulc2 11141 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘𝑍 𝐴))
341, 2, 3, 9, 33isumclim 11222 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘𝑍 𝐴))
357ralrimiva 2508 . . 3 (𝜑 → ∀𝑘𝑍 (𝐵 · 𝐴) ∈ ℂ)
36 sumfct 11175 . . 3 (∀𝑘𝑍 (𝐵 · 𝐴) ∈ ℂ → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴))
3735, 36syl 14 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴))
3834, 37eqtr3d 2175 1 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417  cmpt 3997  dom cdm 4547  cfv 5131  (class class class)co 5782  cc 7642   + caddc 7647   · cmul 7649  cz 9078  cuz 9350  seqcseq 10249  cli 11079  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  isummulc1  11228  trirecip  11302  geoisum1c  11321
  Copyright terms: Public domain W3C validator