Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isummulc2 | GIF version |
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumcl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumcl.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumcl.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
summulc.6 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
isummulc2 | ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumcl.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumcl.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | eqidd 2155 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) | |
4 | summulc.6 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 4 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
6 | isumcl.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
7 | 5, 6 | mulcld 7877 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · 𝐴) ∈ ℂ) |
8 | 7 | fmpttd 5615 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ) |
9 | 8 | ffvelrnda 5595 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ) |
10 | isumcl.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
11 | isumcl.5 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
12 | 1, 2, 10, 6, 11 | isumclim2 11296 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
13 | 10, 6 | eqeltrd 2231 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
14 | 13 | ralrimiva 2527 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
15 | fveq2 5461 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
16 | 15 | eleq1d 2223 | . . . . . 6 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
17 | 16 | rspccva 2812 | . . . . 5 ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
18 | 14, 17 | sylan 281 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
19 | simpr 109 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
20 | eqid 2154 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) = (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) | |
21 | 20 | fvmpt2 5544 | . . . . . . . 8 ⊢ ((𝑘 ∈ 𝑍 ∧ (𝐵 · 𝐴) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
22 | 19, 7, 21 | syl2anc 409 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
23 | 10 | oveq2d 5830 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · (𝐹‘𝑘)) = (𝐵 · 𝐴)) |
24 | 22, 23 | eqtr4d 2190 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
25 | 24 | ralrimiva 2527 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
26 | nffvmpt1 5472 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) | |
27 | 26 | nfeq1 2306 | . . . . . 6 ⊢ Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)) |
28 | fveq2 5461 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) | |
29 | 15 | oveq2d 5830 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝐵 · (𝐹‘𝑘)) = (𝐵 · (𝐹‘𝑚))) |
30 | 28, 29 | eqeq12d 2169 | . . . . . 6 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) ↔ ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
31 | 27, 30 | rspc 2807 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
32 | 25, 31 | mpan9 279 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚))) |
33 | 1, 2, 4, 12, 18, 32 | isermulc2 11214 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
34 | 1, 2, 3, 9, 33 | isumclim 11295 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
35 | 7 | ralrimiva 2527 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐵 · 𝐴) ∈ ℂ) |
36 | sumfct 11248 | . . 3 ⊢ (∀𝑘 ∈ 𝑍 (𝐵 · 𝐴) ∈ ℂ → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) | |
37 | 35, 36 | syl 14 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
38 | 34, 37 | eqtr3d 2189 | 1 ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 ∀wral 2432 ↦ cmpt 4021 dom cdm 4579 ‘cfv 5163 (class class class)co 5814 ℂcc 7709 + caddc 7714 · cmul 7716 ℤcz 9146 ℤ≥cuz 9418 seqcseq 10322 ⇝ cli 11152 Σcsu 11227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-isom 5172 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-frec 6328 df-1o 6353 df-oadd 6357 df-er 6469 df-en 6675 df-dom 6676 df-fin 6677 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-fz 9891 df-fzo 10020 df-seqfrec 10323 df-exp 10397 df-ihash 10627 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-clim 11153 df-sumdc 11228 |
This theorem is referenced by: isummulc1 11301 trirecip 11375 geoisum1c 11394 |
Copyright terms: Public domain | W3C validator |