ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumshft GIF version

Theorem isumshft 10884
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1 𝑍 = (ℤ𝑀)
isumshft.2 𝑊 = (ℤ‘(𝑀 + 𝐾))
isumshft.3 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
isumshft.4 (𝜑𝐾 ∈ ℤ)
isumshft.5 (𝜑𝑀 ∈ ℤ)
isumshft.6 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
isumshft (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑗,𝑘,𝐾   𝜑,𝑗,𝑘   𝑗,𝑊,𝑘   𝐵,𝑗   𝑗,𝑍,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝑀(𝑗,𝑘)

Proof of Theorem isumshft
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2 isumshft.4 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
31, 2zaddcld 8872 . . . . . . . 8 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4 isumshft.2 . . . . . . . . . . . . 13 𝑊 = (ℤ‘(𝑀 + 𝐾))
54eleq2i 2154 . . . . . . . . . . . 12 (𝑥𝑊𝑥 ∈ (ℤ‘(𝑀 + 𝐾)))
65biimpri 131 . . . . . . . . . . 11 (𝑥 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑥𝑊)
76adantl 271 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑥𝑊)
8 isumshft.6 . . . . . . . . . . . . 13 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
98ralrimiva 2446 . . . . . . . . . . . 12 (𝜑 → ∀𝑗𝑊 𝐴 ∈ ℂ)
109adantr 270 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → ∀𝑗𝑊 𝐴 ∈ ℂ)
11 nfcsb1v 2963 . . . . . . . . . . . . 13 𝑗𝑥 / 𝑗𝐴
1211nfel1 2239 . . . . . . . . . . . 12 𝑗𝑥 / 𝑗𝐴 ∈ ℂ
13 csbeq1a 2941 . . . . . . . . . . . . 13 (𝑗 = 𝑥𝐴 = 𝑥 / 𝑗𝐴)
1413eleq1d 2156 . . . . . . . . . . . 12 (𝑗 = 𝑥 → (𝐴 ∈ ℂ ↔ 𝑥 / 𝑗𝐴 ∈ ℂ))
1512, 14rspc 2716 . . . . . . . . . . 11 (𝑥𝑊 → (∀𝑗𝑊 𝐴 ∈ ℂ → 𝑥 / 𝑗𝐴 ∈ ℂ))
167, 10, 15sylc 61 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑥 / 𝑗𝐴 ∈ ℂ)
17 eqid 2088 . . . . . . . . . . 11 (𝑗𝑊𝐴) = (𝑗𝑊𝐴)
1817fvmpts 5382 . . . . . . . . . 10 ((𝑥𝑊𝑥 / 𝑗𝐴 ∈ ℂ) → ((𝑗𝑊𝐴)‘𝑥) = 𝑥 / 𝑗𝐴)
197, 16, 18syl2anc 403 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑥) = 𝑥 / 𝑗𝐴)
2019, 16eqeltrd 2164 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑥) ∈ ℂ)
214eleq2i 2154 . . . . . . . . 9 (𝑚𝑊𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
222zcnd 8869 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
23 eluzelcn 9030 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑚 ∈ ℂ)
2423, 4eleq2s 2182 . . . . . . . . . . 11 (𝑚𝑊𝑚 ∈ ℂ)
25 zex 8759 . . . . . . . . . . . . . 14 ℤ ∈ V
26 isumshft.1 . . . . . . . . . . . . . . 15 𝑍 = (ℤ𝑀)
27 uzssz 9038 . . . . . . . . . . . . . . 15 (ℤ𝑀) ⊆ ℤ
2826, 27eqsstri 3056 . . . . . . . . . . . . . 14 𝑍 ⊆ ℤ
2925, 28ssexi 3977 . . . . . . . . . . . . 13 𝑍 ∈ V
3029mptex 5523 . . . . . . . . . . . 12 (𝑘𝑍𝐵) ∈ V
3130shftval 10259 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
3222, 24, 31syl2an 283 . . . . . . . . . 10 ((𝜑𝑚𝑊) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
33 eqidd 2089 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑘𝑍𝐵) = (𝑘𝑍𝐵))
34 isumshft.3 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
3534eleq1d 2156 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝐾 + 𝑘) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
369adantr 270 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → ∀𝑗𝑊 𝐴 ∈ ℂ)
371adantr 270 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 𝑀 ∈ ℤ)
382adantr 270 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 𝐾 ∈ ℤ)
3937, 38zaddcld 8872 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝑀 + 𝐾) ∈ ℤ)
40 eluzelz 9028 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
4140, 26eleq2s 2182 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑍𝑘 ∈ ℤ)
4241adantl 271 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
4338, 42zaddcld 8872 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ ℤ)
4437zred 8868 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ)
4542zred 8868 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ)
4638zred 8868 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝐾 ∈ ℝ)
4726eleq2i 2154 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4847biimpi 118 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4948adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
50 eluzle 9031 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
5149, 50syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝑀𝑘)
5244, 45, 46, 51leadd1dd 8036 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾))
5342zcnd 8869 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
5438zcnd 8869 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝐾 ∈ ℂ)
5553, 54addcomd 7633 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝑘 + 𝐾) = (𝐾 + 𝑘))
5652, 55breqtrd 3869 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝑀 + 𝐾) ≤ (𝐾 + 𝑘))
57 eluz2 9025 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)) ↔ ((𝑀 + 𝐾) ∈ ℤ ∧ (𝐾 + 𝑘) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝐾 + 𝑘)))
5839, 43, 56, 57syl3anbrc 1127 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)))
5958, 4syl6eleqr 2181 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ 𝑊)
6035, 36, 59rspcdva 2727 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
6133, 60fvmpt2d 5389 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = 𝐵)
62 eqidd 2089 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝑗𝑊𝐴) = (𝑗𝑊𝐴))
6334adantl 271 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝑍) ∧ 𝑗 = (𝐾 + 𝑘)) → 𝐴 = 𝐵)
6462, 63, 59, 60fvmptd 5385 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = 𝐵)
6561, 64eqtr4d 2123 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
6665ralrimiva 2446 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
67 nffvmpt1 5316 . . . . . . . . . . . . . . . 16 𝑘((𝑘𝑍𝐵)‘𝑛)
6867nfeq1 2238 . . . . . . . . . . . . . . 15 𝑘((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))
69 fveq2 5305 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑘𝑍𝐵)‘𝑘) = ((𝑘𝑍𝐵)‘𝑛))
70 oveq2 5660 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐾 + 𝑘) = (𝐾 + 𝑛))
7170fveq2d 5309 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
7269, 71eqeq12d 2102 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) ↔ ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
7368, 72rspc 2716 . . . . . . . . . . . . . 14 (𝑛𝑍 → (∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
7466, 73mpan9 275 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
7574ralrimiva 2446 . . . . . . . . . . . 12 (𝜑 → ∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
7675adantr 270 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → ∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
771adantr 270 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑀 ∈ ℤ)
782adantr 270 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝐾 ∈ ℤ)
79 simpr 108 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑊) → 𝑚𝑊)
8079, 4syl6eleq 2180 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
81 eluzsub 9048 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑚𝐾) ∈ (ℤ𝑀))
8277, 78, 80, 81syl3anc 1174 . . . . . . . . . . . 12 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ (ℤ𝑀))
8382, 26syl6eleqr 2181 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ 𝑍)
84 fveq2 5305 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
85 oveq2 5660 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝐾) → (𝐾 + 𝑛) = (𝐾 + (𝑚𝐾)))
8685fveq2d 5309 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
8784, 86eqeq12d 2102 . . . . . . . . . . . 12 (𝑛 = (𝑚𝐾) → (((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ↔ ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾)))))
8887rspccva 2721 . . . . . . . . . . 11 ((∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∧ (𝑚𝐾) ∈ 𝑍) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
8976, 83, 88syl2anc 403 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
90 pncan3 7690 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐾 + (𝑚𝐾)) = 𝑚)
9122, 24, 90syl2an 283 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝐾 + (𝑚𝐾)) = 𝑚)
9291fveq2d 5309 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))) = ((𝑗𝑊𝐴)‘𝑚))
9332, 89, 923eqtrrd 2125 . . . . . . . . 9 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
9421, 93sylan2br 282 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
95 addcl 7467 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
9695adantl 271 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
973, 20, 94, 96seq3feq 9897 . . . . . . 7 (𝜑 → seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) = seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)))
9897breq1d 3855 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
9930a1i 9 . . . . . . 7 (𝜑 → (𝑘𝑍𝐵) ∈ V)
10026eleq2i 2154 . . . . . . . . . . 11 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
101100biimpri 131 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → 𝑥𝑍)
102101adantl 271 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥𝑍)
10360ralrimiva 2446 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍 𝐵 ∈ ℂ)
104103adantr 270 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘𝑍 𝐵 ∈ ℂ)
105 nfcsb1v 2963 . . . . . . . . . . . 12 𝑘𝑥 / 𝑘𝐵
106105nfel1 2239 . . . . . . . . . . 11 𝑘𝑥 / 𝑘𝐵 ∈ ℂ
107 csbeq1a 2941 . . . . . . . . . . . 12 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
108107eleq1d 2156 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐵 ∈ ℂ ↔ 𝑥 / 𝑘𝐵 ∈ ℂ))
109106, 108rspc 2716 . . . . . . . . . 10 (𝑥𝑍 → (∀𝑘𝑍 𝐵 ∈ ℂ → 𝑥 / 𝑘𝐵 ∈ ℂ))
110102, 104, 109sylc 61 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 / 𝑘𝐵 ∈ ℂ)
111 eqid 2088 . . . . . . . . . 10 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
112111fvmpts 5382 . . . . . . . . 9 ((𝑥𝑍𝑥 / 𝑘𝐵 ∈ ℂ) → ((𝑘𝑍𝐵)‘𝑥) = 𝑥 / 𝑘𝐵)
113102, 110, 112syl2anc 403 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑘𝑍𝐵)‘𝑥) = 𝑥 / 𝑘𝐵)
114113, 110eqeltrd 2164 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑘𝑍𝐵)‘𝑥) ∈ ℂ)
11599, 1, 2, 114, 96iser3shft 10735 . . . . . 6 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
11698, 115bitr4d 189 . . . . 5 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
117116iotabidv 5001 . . . 4 (𝜑 → (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
118 df-fv 5023 . . . 4 ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥)
119 df-fv 5023 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥)
120117, 118, 1193eqtr4g 2145 . . 3 (𝜑 → ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
121 eqidd 2089 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = ((𝑗𝑊𝐴)‘𝑚))
1228fmpttd 5453 . . . . 5 (𝜑 → (𝑗𝑊𝐴):𝑊⟶ℂ)
123122ffvelrnda 5434 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) ∈ ℂ)
1244, 3, 121, 123isum 10776 . . 3 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))))
125 eqidd 2089 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘𝑛))
126122adantr 270 . . . . . 6 ((𝜑𝑛𝑍) → (𝑗𝑊𝐴):𝑊⟶ℂ)
127 eluzelcn 9030 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
128127, 26eleq2s 2182 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℂ)
129 addcom 7619 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
13022, 128, 129syl2an 283 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
131 id 19 . . . . . . . . . . . 12 (𝑘𝑍𝑘𝑍)
132131, 26syl6eleq 2180 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
133 eluzadd 9047 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
134132, 2, 133syl2anr 284 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
135130, 134eqeltrd 2164 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)))
136135, 4syl6eleqr 2181 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ 𝑊)
137136ralrimiva 2446 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊)
13870eleq1d 2156 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐾 + 𝑘) ∈ 𝑊 ↔ (𝐾 + 𝑛) ∈ 𝑊))
139138rspccva 2721 . . . . . . 7 ((∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
140137, 139sylan 277 . . . . . 6 ((𝜑𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
141126, 140ffvelrnd 5435 . . . . 5 ((𝜑𝑛𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∈ ℂ)
14274, 141eqeltrd 2164 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) ∈ ℂ)
14326, 1, 125, 142isum 10776 . . 3 (𝜑 → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
144120, 124, 1433eqtr4d 2130 . 2 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛))
145 sumfct 10763 . . 3 (∀𝑗𝑊 𝐴 ∈ ℂ → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑗𝑊 𝐴)
1469, 145syl 14 . 2 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑗𝑊 𝐴)
147 sumfct 10763 . . 3 (∀𝑘𝑍 𝐵 ∈ ℂ → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = Σ𝑘𝑍 𝐵)
148103, 147syl 14 . 2 (𝜑 → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = Σ𝑘𝑍 𝐵)
149144, 146, 1483eqtr3d 2128 1 (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wral 2359  Vcvv 2619  csb 2933   class class class wbr 3845  cmpt 3899  cio 4978  wf 5011  cfv 5015  (class class class)co 5652  cc 7348   + caddc 7353  cle 7523  cmin 7653  cz 8750  cuz 9019  seqcseq 9852   shift cshi 10248  cli 10666  Σcsu 10742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6292  df-en 6458  df-dom 6459  df-fin 6460  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-n0 8674  df-z 8751  df-uz 9020  df-q 9105  df-rp 9135  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854  df-exp 9955  df-ihash 10184  df-shft 10249  df-cj 10276  df-rsqrt 10431  df-abs 10432  df-clim 10667  df-isum 10743
This theorem is referenced by:  eftlub  10980
  Copyright terms: Public domain W3C validator