ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumshft GIF version

Theorem isumshft 11453
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1 𝑍 = (ℤ𝑀)
isumshft.2 𝑊 = (ℤ‘(𝑀 + 𝐾))
isumshft.3 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
isumshft.4 (𝜑𝐾 ∈ ℤ)
isumshft.5 (𝜑𝑀 ∈ ℤ)
isumshft.6 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
isumshft (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑗,𝑘,𝐾   𝜑,𝑗,𝑘   𝑗,𝑊,𝑘   𝐵,𝑗   𝑗,𝑍,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝑀(𝑗,𝑘)

Proof of Theorem isumshft
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2 isumshft.4 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
31, 2zaddcld 9338 . . . . . . . 8 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4 isumshft.2 . . . . . . . . . . . . 13 𝑊 = (ℤ‘(𝑀 + 𝐾))
54eleq2i 2237 . . . . . . . . . . . 12 (𝑥𝑊𝑥 ∈ (ℤ‘(𝑀 + 𝐾)))
65biimpri 132 . . . . . . . . . . 11 (𝑥 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑥𝑊)
76adantl 275 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑥𝑊)
8 isumshft.6 . . . . . . . . . . . . 13 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
98ralrimiva 2543 . . . . . . . . . . . 12 (𝜑 → ∀𝑗𝑊 𝐴 ∈ ℂ)
109adantr 274 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → ∀𝑗𝑊 𝐴 ∈ ℂ)
11 nfcsb1v 3082 . . . . . . . . . . . . 13 𝑗𝑥 / 𝑗𝐴
1211nfel1 2323 . . . . . . . . . . . 12 𝑗𝑥 / 𝑗𝐴 ∈ ℂ
13 csbeq1a 3058 . . . . . . . . . . . . 13 (𝑗 = 𝑥𝐴 = 𝑥 / 𝑗𝐴)
1413eleq1d 2239 . . . . . . . . . . . 12 (𝑗 = 𝑥 → (𝐴 ∈ ℂ ↔ 𝑥 / 𝑗𝐴 ∈ ℂ))
1512, 14rspc 2828 . . . . . . . . . . 11 (𝑥𝑊 → (∀𝑗𝑊 𝐴 ∈ ℂ → 𝑥 / 𝑗𝐴 ∈ ℂ))
167, 10, 15sylc 62 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑥 / 𝑗𝐴 ∈ ℂ)
17 eqid 2170 . . . . . . . . . . 11 (𝑗𝑊𝐴) = (𝑗𝑊𝐴)
1817fvmpts 5574 . . . . . . . . . 10 ((𝑥𝑊𝑥 / 𝑗𝐴 ∈ ℂ) → ((𝑗𝑊𝐴)‘𝑥) = 𝑥 / 𝑗𝐴)
197, 16, 18syl2anc 409 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑥) = 𝑥 / 𝑗𝐴)
2019, 16eqeltrd 2247 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑥) ∈ ℂ)
214eleq2i 2237 . . . . . . . . 9 (𝑚𝑊𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
222zcnd 9335 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
23 eluzelcn 9498 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑚 ∈ ℂ)
2423, 4eleq2s 2265 . . . . . . . . . . 11 (𝑚𝑊𝑚 ∈ ℂ)
25 zex 9221 . . . . . . . . . . . . . 14 ℤ ∈ V
26 isumshft.1 . . . . . . . . . . . . . . 15 𝑍 = (ℤ𝑀)
27 uzssz 9506 . . . . . . . . . . . . . . 15 (ℤ𝑀) ⊆ ℤ
2826, 27eqsstri 3179 . . . . . . . . . . . . . 14 𝑍 ⊆ ℤ
2925, 28ssexi 4127 . . . . . . . . . . . . 13 𝑍 ∈ V
3029mptex 5722 . . . . . . . . . . . 12 (𝑘𝑍𝐵) ∈ V
3130shftval 10789 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
3222, 24, 31syl2an 287 . . . . . . . . . 10 ((𝜑𝑚𝑊) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
33 eqidd 2171 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑘𝑍𝐵) = (𝑘𝑍𝐵))
34 isumshft.3 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
3534eleq1d 2239 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝐾 + 𝑘) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
369adantr 274 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → ∀𝑗𝑊 𝐴 ∈ ℂ)
371adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 𝑀 ∈ ℤ)
382adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 𝐾 ∈ ℤ)
3937, 38zaddcld 9338 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝑀 + 𝐾) ∈ ℤ)
40 eluzelz 9496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
4140, 26eleq2s 2265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑍𝑘 ∈ ℤ)
4241adantl 275 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
4338, 42zaddcld 9338 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ ℤ)
4437zred 9334 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝑀 ∈ ℝ)
4542zred 9334 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝑘 ∈ ℝ)
4638zred 9334 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝐾 ∈ ℝ)
4726eleq2i 2237 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4847biimpi 119 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4948adantl 275 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
50 eluzle 9499 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
5149, 50syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝑀𝑘)
5244, 45, 46, 51leadd1dd 8478 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾))
5342zcnd 9335 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
5438zcnd 9335 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 𝐾 ∈ ℂ)
5553, 54addcomd 8070 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝑘 + 𝐾) = (𝐾 + 𝑘))
5652, 55breqtrd 4015 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝑀 + 𝐾) ≤ (𝐾 + 𝑘))
57 eluz2 9493 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)) ↔ ((𝑀 + 𝐾) ∈ ℤ ∧ (𝐾 + 𝑘) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝐾 + 𝑘)))
5839, 43, 56, 57syl3anbrc 1176 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)))
5958, 4eleqtrrdi 2264 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ 𝑊)
6035, 36, 59rspcdva 2839 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
6133, 60fvmpt2d 5582 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = 𝐵)
62 eqidd 2171 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝑗𝑊𝐴) = (𝑗𝑊𝐴))
6334adantl 275 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝑍) ∧ 𝑗 = (𝐾 + 𝑘)) → 𝐴 = 𝐵)
6462, 63, 59, 60fvmptd 5577 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = 𝐵)
6561, 64eqtr4d 2206 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
6665ralrimiva 2543 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
67 nffvmpt1 5507 . . . . . . . . . . . . . . . 16 𝑘((𝑘𝑍𝐵)‘𝑛)
6867nfeq1 2322 . . . . . . . . . . . . . . 15 𝑘((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))
69 fveq2 5496 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑘𝑍𝐵)‘𝑘) = ((𝑘𝑍𝐵)‘𝑛))
70 oveq2 5861 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝐾 + 𝑘) = (𝐾 + 𝑛))
7170fveq2d 5500 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
7269, 71eqeq12d 2185 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) ↔ ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
7368, 72rspc 2828 . . . . . . . . . . . . . 14 (𝑛𝑍 → (∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
7466, 73mpan9 279 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
7574ralrimiva 2543 . . . . . . . . . . . 12 (𝜑 → ∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
7675adantr 274 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → ∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
771adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑀 ∈ ℤ)
782adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝐾 ∈ ℤ)
79 simpr 109 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑊) → 𝑚𝑊)
8079, 4eleqtrdi 2263 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
81 eluzsub 9516 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑚𝐾) ∈ (ℤ𝑀))
8277, 78, 80, 81syl3anc 1233 . . . . . . . . . . . 12 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ (ℤ𝑀))
8382, 26eleqtrrdi 2264 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ 𝑍)
84 fveq2 5496 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
85 oveq2 5861 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝐾) → (𝐾 + 𝑛) = (𝐾 + (𝑚𝐾)))
8685fveq2d 5500 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
8784, 86eqeq12d 2185 . . . . . . . . . . . 12 (𝑛 = (𝑚𝐾) → (((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ↔ ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾)))))
8887rspccva 2833 . . . . . . . . . . 11 ((∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∧ (𝑚𝐾) ∈ 𝑍) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
8976, 83, 88syl2anc 409 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
90 pncan3 8127 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐾 + (𝑚𝐾)) = 𝑚)
9122, 24, 90syl2an 287 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝐾 + (𝑚𝐾)) = 𝑚)
9291fveq2d 5500 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))) = ((𝑗𝑊𝐴)‘𝑚))
9332, 89, 923eqtrrd 2208 . . . . . . . . 9 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
9421, 93sylan2br 286 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
95 addcl 7899 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
9695adantl 275 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
973, 20, 94, 96seq3feq 10428 . . . . . . 7 (𝜑 → seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) = seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)))
9897breq1d 3999 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
9930a1i 9 . . . . . . 7 (𝜑 → (𝑘𝑍𝐵) ∈ V)
10026eleq2i 2237 . . . . . . . . . . 11 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
101100biimpri 132 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → 𝑥𝑍)
102101adantl 275 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥𝑍)
10360ralrimiva 2543 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝑍 𝐵 ∈ ℂ)
104103adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘𝑍 𝐵 ∈ ℂ)
105 nfcsb1v 3082 . . . . . . . . . . . 12 𝑘𝑥 / 𝑘𝐵
106105nfel1 2323 . . . . . . . . . . 11 𝑘𝑥 / 𝑘𝐵 ∈ ℂ
107 csbeq1a 3058 . . . . . . . . . . . 12 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
108107eleq1d 2239 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐵 ∈ ℂ ↔ 𝑥 / 𝑘𝐵 ∈ ℂ))
109106, 108rspc 2828 . . . . . . . . . 10 (𝑥𝑍 → (∀𝑘𝑍 𝐵 ∈ ℂ → 𝑥 / 𝑘𝐵 ∈ ℂ))
110102, 104, 109sylc 62 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 / 𝑘𝐵 ∈ ℂ)
111 eqid 2170 . . . . . . . . . 10 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
112111fvmpts 5574 . . . . . . . . 9 ((𝑥𝑍𝑥 / 𝑘𝐵 ∈ ℂ) → ((𝑘𝑍𝐵)‘𝑥) = 𝑥 / 𝑘𝐵)
113102, 110, 112syl2anc 409 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑘𝑍𝐵)‘𝑥) = 𝑥 / 𝑘𝐵)
114113, 110eqeltrd 2247 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑘𝑍𝐵)‘𝑥) ∈ ℂ)
11599, 1, 2, 114, 96iser3shft 11309 . . . . . 6 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
11698, 115bitr4d 190 . . . . 5 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
117116iotabidv 5181 . . . 4 (𝜑 → (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
118 df-fv 5206 . . . 4 ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥)
119 df-fv 5206 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥)
120117, 118, 1193eqtr4g 2228 . . 3 (𝜑 → ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
121 eqidd 2171 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = ((𝑗𝑊𝐴)‘𝑚))
1228fmpttd 5651 . . . . 5 (𝜑 → (𝑗𝑊𝐴):𝑊⟶ℂ)
123122ffvelrnda 5631 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) ∈ ℂ)
1244, 3, 121, 123isum 11348 . . 3 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))))
125 eqidd 2171 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘𝑛))
126122adantr 274 . . . . . 6 ((𝜑𝑛𝑍) → (𝑗𝑊𝐴):𝑊⟶ℂ)
127 eluzelcn 9498 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
128127, 26eleq2s 2265 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℂ)
129 addcom 8056 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
13022, 128, 129syl2an 287 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
131 id 19 . . . . . . . . . . . 12 (𝑘𝑍𝑘𝑍)
132131, 26eleqtrdi 2263 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
133 eluzadd 9515 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
134132, 2, 133syl2anr 288 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
135130, 134eqeltrd 2247 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)))
136135, 4eleqtrrdi 2264 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ 𝑊)
137136ralrimiva 2543 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊)
13870eleq1d 2239 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐾 + 𝑘) ∈ 𝑊 ↔ (𝐾 + 𝑛) ∈ 𝑊))
139138rspccva 2833 . . . . . . 7 ((∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
140137, 139sylan 281 . . . . . 6 ((𝜑𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
141126, 140ffvelrnd 5632 . . . . 5 ((𝜑𝑛𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∈ ℂ)
14274, 141eqeltrd 2247 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) ∈ ℂ)
14326, 1, 125, 142isum 11348 . . 3 (𝜑 → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
144120, 124, 1433eqtr4d 2213 . 2 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛))
145 sumfct 11337 . . 3 (∀𝑗𝑊 𝐴 ∈ ℂ → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑗𝑊 𝐴)
1469, 145syl 14 . 2 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑗𝑊 𝐴)
147 sumfct 11337 . . 3 (∀𝑘𝑍 𝐵 ∈ ℂ → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = Σ𝑘𝑍 𝐵)
148103, 147syl 14 . 2 (𝜑 → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = Σ𝑘𝑍 𝐵)
149144, 146, 1483eqtr3d 2211 1 (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  csb 3049   class class class wbr 3989  cmpt 4050  cio 5158  wf 5194  cfv 5198  (class class class)co 5853  cc 7772   + caddc 7777  cle 7955  cmin 8090  cz 9212  cuz 9487  seqcseq 10401   shift cshi 10778  cli 11241  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-shft 10779  df-cj 10806  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  eftlub  11653
  Copyright terms: Public domain W3C validator