Step | Hyp | Ref
| Expression |
1 | | isumshft.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | isumshft.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
3 | 1, 2 | zaddcld 9317 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 𝐾) ∈ ℤ) |
4 | | isumshft.2 |
. . . . . . . . . . . . 13
⊢ 𝑊 =
(ℤ≥‘(𝑀 + 𝐾)) |
5 | 4 | eleq2i 2233 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) |
6 | 5 | biimpri 132 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
(ℤ≥‘(𝑀 + 𝐾)) → 𝑥 ∈ 𝑊) |
7 | 6 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑥 ∈ 𝑊) |
8 | | isumshft.6 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ) |
9 | 8 | ralrimiva 2539 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑗 ∈ 𝑊 𝐴 ∈ ℂ) |
10 | 9 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ∀𝑗 ∈ 𝑊 𝐴 ∈ ℂ) |
11 | | nfcsb1v 3078 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗⦋𝑥 / 𝑗⦌𝐴 |
12 | 11 | nfel1 2319 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗⦋𝑥 / 𝑗⦌𝐴 ∈ ℂ |
13 | | csbeq1a 3054 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑥 → 𝐴 = ⦋𝑥 / 𝑗⦌𝐴) |
14 | 13 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑥 → (𝐴 ∈ ℂ ↔ ⦋𝑥 / 𝑗⦌𝐴 ∈ ℂ)) |
15 | 12, 14 | rspc 2824 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑊 → (∀𝑗 ∈ 𝑊 𝐴 ∈ ℂ → ⦋𝑥 / 𝑗⦌𝐴 ∈ ℂ)) |
16 | 7, 10, 15 | sylc 62 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ⦋𝑥 / 𝑗⦌𝐴 ∈ ℂ) |
17 | | eqid 2165 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑊 ↦ 𝐴) = (𝑗 ∈ 𝑊 ↦ 𝐴) |
18 | 17 | fvmpts 5564 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑊 ∧ ⦋𝑥 / 𝑗⦌𝐴 ∈ ℂ) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑥) = ⦋𝑥 / 𝑗⦌𝐴) |
19 | 7, 16, 18 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑥) = ⦋𝑥 / 𝑗⦌𝐴) |
20 | 19, 16 | eqeltrd 2243 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑥) ∈ ℂ) |
21 | 4 | eleq2i 2233 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝑊 ↔ 𝑚 ∈ (ℤ≥‘(𝑀 + 𝐾))) |
22 | 2 | zcnd 9314 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ ℂ) |
23 | | eluzelcn 9477 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘(𝑀 + 𝐾)) → 𝑚 ∈ ℂ) |
24 | 23, 4 | eleq2s 2261 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝑊 → 𝑚 ∈ ℂ) |
25 | | zex 9200 |
. . . . . . . . . . . . . 14
⊢ ℤ
∈ V |
26 | | isumshft.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑍 =
(ℤ≥‘𝑀) |
27 | | uzssz 9485 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
28 | 26, 27 | eqsstri 3174 |
. . . . . . . . . . . . . 14
⊢ 𝑍 ⊆
ℤ |
29 | 25, 28 | ssexi 4120 |
. . . . . . . . . . . . 13
⊢ 𝑍 ∈ V |
30 | 29 | mptex 5711 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) ∈ V |
31 | 30 | shftval 10767 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾))) |
32 | 22, 24, 31 | syl2an 287 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾))) |
33 | | eqidd 2166 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵)) |
34 | | isumshft.3 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵) |
35 | 34 | eleq1d 2235 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝐾 + 𝑘) → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
36 | 9 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∀𝑗 ∈ 𝑊 𝐴 ∈ ℂ) |
37 | 1 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑀 ∈ ℤ) |
38 | 2 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐾 ∈ ℤ) |
39 | 37, 38 | zaddcld 9317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀 + 𝐾) ∈ ℤ) |
40 | | eluzelz 9475 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
41 | 40, 26 | eleq2s 2261 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
42 | 41 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
43 | 38, 42 | zaddcld 9317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) ∈ ℤ) |
44 | 37 | zred 9313 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑀 ∈ ℝ) |
45 | 42 | zred 9313 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℝ) |
46 | 38 | zred 9313 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐾 ∈ ℝ) |
47 | 26 | eleq2i 2233 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
48 | 47 | biimpi 119 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ≥‘𝑀)) |
49 | 48 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (ℤ≥‘𝑀)) |
50 | | eluzle 9478 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) |
51 | 49, 50 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑀 ≤ 𝑘) |
52 | 44, 45, 46, 51 | leadd1dd 8457 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)) |
53 | 42 | zcnd 9314 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℂ) |
54 | 38 | zcnd 9314 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐾 ∈ ℂ) |
55 | 53, 54 | addcomd 8049 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐾) = (𝐾 + 𝑘)) |
56 | 52, 55 | breqtrd 4008 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀 + 𝐾) ≤ (𝐾 + 𝑘)) |
57 | | eluz2 9472 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 + 𝑘) ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ ((𝑀 + 𝐾) ∈ ℤ ∧ (𝐾 + 𝑘) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝐾 + 𝑘))) |
58 | 39, 43, 56, 57 | syl3anbrc 1171 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
59 | 58, 4 | eleqtrrdi 2260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) ∈ 𝑊) |
60 | 35, 36, 59 | rspcdva 2835 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
61 | 33, 60 | fvmpt2d 5572 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = 𝐵) |
62 | | eqidd 2166 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑗 ∈ 𝑊 ↦ 𝐴) = (𝑗 ∈ 𝑊 ↦ 𝐴)) |
63 | 34 | adantl 275 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 = (𝐾 + 𝑘)) → 𝐴 = 𝐵) |
64 | 62, 63, 59, 60 | fvmptd 5567 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) = 𝐵) |
65 | 61, 64 | eqtr4d 2201 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘))) |
66 | 65 | ralrimiva 2539 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘))) |
67 | | nffvmpt1 5497 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) |
68 | 67 | nfeq1 2318 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) |
69 | | fveq2 5486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
70 | | oveq2 5850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → (𝐾 + 𝑘) = (𝐾 + 𝑛)) |
71 | 70 | fveq2d 5490 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛))) |
72 | 69, 71 | eqeq12d 2180 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) ↔ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)))) |
73 | 68, 72 | rspc 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)))) |
74 | 66, 73 | mpan9 279 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛))) |
75 | 74 | ralrimiva 2539 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛))) |
76 | 75 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ∀𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛))) |
77 | 1 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 𝑀 ∈ ℤ) |
78 | 2 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 𝐾 ∈ ℤ) |
79 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 𝑚 ∈ 𝑊) |
80 | 79, 4 | eleqtrdi 2259 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 𝑚 ∈ (ℤ≥‘(𝑀 + 𝐾))) |
81 | | eluzsub 9495 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈
(ℤ≥‘(𝑀 + 𝐾))) → (𝑚 − 𝐾) ∈ (ℤ≥‘𝑀)) |
82 | 77, 78, 80, 81 | syl3anc 1228 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝑚 − 𝐾) ∈ (ℤ≥‘𝑀)) |
83 | 82, 26 | eleqtrrdi 2260 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝑚 − 𝐾) ∈ 𝑍) |
84 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 − 𝐾) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾))) |
85 | | oveq2 5850 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 − 𝐾) → (𝐾 + 𝑛) = (𝐾 + (𝑚 − 𝐾))) |
86 | 85 | fveq2d 5490 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 − 𝐾) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾)))) |
87 | 84, 86 | eqeq12d 2180 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 − 𝐾) → (((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) ↔ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾))))) |
88 | 87 | rspccva 2829 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) ∧ (𝑚 − 𝐾) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾)))) |
89 | 76, 83, 88 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾)))) |
90 | | pncan3 8106 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐾 + (𝑚 − 𝐾)) = 𝑚) |
91 | 22, 24, 90 | syl2an 287 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐾 + (𝑚 − 𝐾)) = 𝑚) |
92 | 91 | fveq2d 5490 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾))) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚)) |
93 | 32, 89, 92 | 3eqtrrd 2203 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = (((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)‘𝑚)) |
94 | 21, 93 | sylan2br 286 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = (((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)‘𝑚)) |
95 | | addcl 7878 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
96 | 95 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
97 | 3, 20, 94, 96 | seq3feq 10407 |
. . . . . . 7
⊢ (𝜑 → seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) = seq(𝑀 + 𝐾)( + , ((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾))) |
98 | 97 | breq1d 3992 |
. . . . . 6
⊢ (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)) ⇝ 𝑥)) |
99 | 30 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ∈ V) |
100 | 26 | eleq2i 2233 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑍 ↔ 𝑥 ∈ (ℤ≥‘𝑀)) |
101 | 100 | biimpri 132 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ 𝑍) |
102 | 101 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ 𝑍) |
103 | 60 | ralrimiva 2539 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝐵 ∈ ℂ) |
104 | 103 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 𝐵 ∈ ℂ) |
105 | | nfcsb1v 3078 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 |
106 | 105 | nfel1 2319 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ |
107 | | csbeq1a 3054 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑥 → 𝐵 = ⦋𝑥 / 𝑘⦌𝐵) |
108 | 107 | eleq1d 2235 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → (𝐵 ∈ ℂ ↔ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ)) |
109 | 106, 108 | rspc 2824 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝐵 ∈ ℂ → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ)) |
110 | 102, 104,
109 | sylc 62 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) |
111 | | eqid 2165 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) |
112 | 111 | fvmpts 5564 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑍 ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐵) |
113 | 102, 110,
112 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐵) |
114 | 113, 110 | eqeltrd 2243 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑥) ∈ ℂ) |
115 | 99, 1, 2, 114, 96 | iser3shft 11287 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)) ⇝ 𝑥)) |
116 | 98, 115 | bitr4d 190 |
. . . . 5
⊢ (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) ⇝ 𝑥 ↔ seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥)) |
117 | 116 | iotabidv 5174 |
. . . 4
⊢ (𝜑 → (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥)) |
118 | | df-fv 5196 |
. . . 4
⊢ ( ⇝
‘seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴))) = (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) ⇝ 𝑥) |
119 | | df-fv 5196 |
. . . 4
⊢ ( ⇝
‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵))) = (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥) |
120 | 117, 118,
119 | 3eqtr4g 2224 |
. . 3
⊢ (𝜑 → ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴))) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)))) |
121 | | eqidd 2166 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚)) |
122 | 8 | fmpttd 5640 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ 𝑊 ↦ 𝐴):𝑊⟶ℂ) |
123 | 122 | ffvelrnda 5620 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) ∈ ℂ) |
124 | 4, 3, 121, 123 | isum 11326 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ 𝑊 ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)))) |
125 | | eqidd 2166 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
126 | 122 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑗 ∈ 𝑊 ↦ 𝐴):𝑊⟶ℂ) |
127 | | eluzelcn 9477 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℂ) |
128 | 127, 26 | eleq2s 2261 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
129 | | addcom 8035 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
130 | 22, 128, 129 | syl2an 287 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
131 | | id 19 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍) |
132 | 131, 26 | eleqtrdi 2259 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ≥‘𝑀)) |
133 | | eluzadd 9494 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
134 | 132, 2, 133 | syl2anr 288 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
135 | 130, 134 | eqeltrd 2243 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
136 | 135, 4 | eleqtrrdi 2260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) ∈ 𝑊) |
137 | 136 | ralrimiva 2539 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐾 + 𝑘) ∈ 𝑊) |
138 | 70 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐾 + 𝑘) ∈ 𝑊 ↔ (𝐾 + 𝑛) ∈ 𝑊)) |
139 | 138 | rspccva 2829 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝑍 (𝐾 + 𝑘) ∈ 𝑊 ∧ 𝑛 ∈ 𝑍) → (𝐾 + 𝑛) ∈ 𝑊) |
140 | 137, 139 | sylan 281 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐾 + 𝑛) ∈ 𝑊) |
141 | 126, 140 | ffvelrnd 5621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) ∈ ℂ) |
142 | 74, 141 | eqeltrd 2243 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) ∈ ℂ) |
143 | 26, 1, 125, 142 | isum 11326 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)))) |
144 | 120, 124,
143 | 3eqtr4d 2208 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝑊 ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = Σ𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
145 | | sumfct 11315 |
. . 3
⊢
(∀𝑗 ∈
𝑊 𝐴 ∈ ℂ → Σ𝑚 ∈ 𝑊 ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = Σ𝑗 ∈ 𝑊 𝐴) |
146 | 9, 145 | syl 14 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝑊 ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = Σ𝑗 ∈ 𝑊 𝐴) |
147 | | sumfct 11315 |
. . 3
⊢
(∀𝑘 ∈
𝑍 𝐵 ∈ ℂ → Σ𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = Σ𝑘 ∈ 𝑍 𝐵) |
148 | 103, 147 | syl 14 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = Σ𝑘 ∈ 𝑍 𝐵) |
149 | 144, 146,
148 | 3eqtr3d 2206 |
1
⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) |