ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvmpt1 GIF version

Theorem nffvmpt1 5526
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
nffvmpt1 𝑥((𝑥𝐴𝐵)‘𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem nffvmpt1
StepHypRef Expression
1 nfmpt1 4096 . 2 𝑥(𝑥𝐴𝐵)
2 nfcv 2319 . 2 𝑥𝐶
31, 2nffv 5525 1 𝑥((𝑥𝐴𝐵)‘𝐶)
Colors of variables: wff set class
Syntax hints:  wnfc 2306  cmpt 4064  cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2739  df-un 3133  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-iota 5178  df-fv 5224
This theorem is referenced by:  fvmptt  5607  fmptco  5682  offval2  6097  ofrfval2  6098  mptelixpg  6733  dom2lem  6771  cc2  7265  fsumf1o  11397  fsum3cvg2  11401  fsumadd  11413  isummulc2  11433  isumshft  11497  fprodf1o  11595  txcnp  13741  cnmpt1t  13755
  Copyright terms: Public domain W3C validator