| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffvmpt1 | GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 4127 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 5571 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2326 ↦ cmpt 4095 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: fvmptt 5656 fmptco 5731 offval2 6155 ofrfval2 6156 mptelixpg 6802 dom2lem 6840 cc2 7350 fsumf1o 11572 fsum3cvg2 11576 fsumadd 11588 isummulc2 11608 isumshft 11672 fprodf1o 11770 prdsbas3 12989 txcnp 14591 cnmpt1t 14605 elplyd 15061 |
| Copyright terms: Public domain | W3C validator |