ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvmpt1 GIF version

Theorem nffvmpt1 5329
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
nffvmpt1 𝑥((𝑥𝐴𝐵)‘𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem nffvmpt1
StepHypRef Expression
1 nfmpt1 3937 . 2 𝑥(𝑥𝐴𝐵)
2 nfcv 2229 . 2 𝑥𝐶
31, 2nffv 5328 1 𝑥((𝑥𝐴𝐵)‘𝐶)
Colors of variables: wff set class
Syntax hints:  wnfc 2216  cmpt 3905  cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-iota 4993  df-fv 5036
This theorem is referenced by:  fvmptt  5407  fmptco  5478  offval2  5884  ofrfval2  5885  mptelixpg  6505  dom2lem  6543  fsumf1o  10843  fisumcvg2  10847  fsum3cvg2  10848  fsumadd  10861  isummulc2  10881  isumshft  10945
  Copyright terms: Public domain W3C validator