ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvmpt1 GIF version

Theorem nffvmpt1 5637
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
nffvmpt1 𝑥((𝑥𝐴𝐵)‘𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem nffvmpt1
StepHypRef Expression
1 nfmpt1 4176 . 2 𝑥(𝑥𝐴𝐵)
2 nfcv 2372 . 2 𝑥𝐶
31, 2nffv 5636 1 𝑥((𝑥𝐴𝐵)‘𝐶)
Colors of variables: wff set class
Syntax hints:  wnfc 2359  cmpt 4144  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-iota 5277  df-fv 5325
This theorem is referenced by:  fvmptt  5725  fmptco  5800  offval2  6232  ofrfval2  6233  mptelixpg  6879  dom2lem  6921  cc2  7449  fsumf1o  11896  fsum3cvg2  11900  fsumadd  11912  isummulc2  11932  isumshft  11996  fprodf1o  12094  prdsbas3  13315  txcnp  14939  cnmpt1t  14953  elplyd  15409
  Copyright terms: Public domain W3C validator