Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffvmpt1 | GIF version |
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 4075 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | 1, 2 | nffv 5496 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2295 ↦ cmpt 4043 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-iota 5153 df-fv 5196 |
This theorem is referenced by: fvmptt 5577 fmptco 5651 offval2 6065 ofrfval2 6066 mptelixpg 6700 dom2lem 6738 cc2 7208 fsumf1o 11331 fsum3cvg2 11335 fsumadd 11347 isummulc2 11367 isumshft 11431 fprodf1o 11529 txcnp 12911 cnmpt1t 12925 |
Copyright terms: Public domain | W3C validator |