![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffvmpt1 | GIF version |
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 3937 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | nfcv 2229 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | 1, 2 | nffv 5328 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2216 ↦ cmpt 3905 ‘cfv 5028 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rex 2366 df-v 2622 df-un 3004 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-mpt 3907 df-iota 4993 df-fv 5036 |
This theorem is referenced by: fvmptt 5407 fmptco 5478 offval2 5884 ofrfval2 5885 mptelixpg 6505 dom2lem 6543 fsumf1o 10843 fisumcvg2 10847 fsum3cvg2 10848 fsumadd 10861 isummulc2 10881 isumshft 10945 |
Copyright terms: Public domain | W3C validator |