ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvmpt1 GIF version

Theorem nffvmpt1 5497
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
nffvmpt1 𝑥((𝑥𝐴𝐵)‘𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem nffvmpt1
StepHypRef Expression
1 nfmpt1 4075 . 2 𝑥(𝑥𝐴𝐵)
2 nfcv 2308 . 2 𝑥𝐶
31, 2nffv 5496 1 𝑥((𝑥𝐴𝐵)‘𝐶)
Colors of variables: wff set class
Syntax hints:  wnfc 2295  cmpt 4043  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-iota 5153  df-fv 5196
This theorem is referenced by:  fvmptt  5577  fmptco  5651  offval2  6065  ofrfval2  6066  mptelixpg  6700  dom2lem  6738  cc2  7208  fsumf1o  11331  fsum3cvg2  11335  fsumadd  11347  isummulc2  11367  isumshft  11431  fprodf1o  11529  txcnp  12911  cnmpt1t  12925
  Copyright terms: Public domain W3C validator