ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffvmpt1 GIF version

Theorem nffvmpt1 5572
Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
nffvmpt1 𝑥((𝑥𝐴𝐵)‘𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem nffvmpt1
StepHypRef Expression
1 nfmpt1 4127 . 2 𝑥(𝑥𝐴𝐵)
2 nfcv 2339 . 2 𝑥𝐶
31, 2nffv 5571 1 𝑥((𝑥𝐴𝐵)‘𝐶)
Colors of variables: wff set class
Syntax hints:  wnfc 2326  cmpt 4095  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-iota 5220  df-fv 5267
This theorem is referenced by:  fvmptt  5656  fmptco  5731  offval2  6155  ofrfval2  6156  mptelixpg  6802  dom2lem  6840  cc2  7350  fsumf1o  11572  fsum3cvg2  11576  fsumadd  11588  isummulc2  11608  isumshft  11672  fprodf1o  11770  prdsbas3  12989  txcnp  14591  cnmpt1t  14605  elplyd  15061
  Copyright terms: Public domain W3C validator