| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffvmpt1 | GIF version | ||
| Description: Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| nffvmpt1 | ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 4136 | . 2 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 1, 2 | nffv 5580 | 1 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2334 ↦ cmpt 4104 ‘cfv 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-iota 5229 df-fv 5276 |
| This theorem is referenced by: fvmptt 5665 fmptco 5740 offval2 6164 ofrfval2 6165 mptelixpg 6811 dom2lem 6849 cc2 7361 fsumf1o 11620 fsum3cvg2 11624 fsumadd 11636 isummulc2 11656 isumshft 11720 fprodf1o 11818 prdsbas3 13037 txcnp 14661 cnmpt1t 14675 elplyd 15131 |
| Copyright terms: Public domain | W3C validator |