| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9013 | . 2 ⊢ ℕ ⊆ ℝ | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℝcr 7897 ℕcn 9009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3876 df-inn 9010 |
| This theorem is referenced by: nnrei 9018 peano2nn 9021 nn1suc 9028 nnge1 9032 nnle1eq1 9033 nngt0 9034 nnnlt1 9035 nnap0 9038 nn2ge 9042 nn1gt1 9043 nndivre 9045 nnrecgt0 9047 nnsub 9048 arch 9265 nnrecl 9266 bndndx 9267 nn0ge0 9293 0mnnnnn0 9300 nnnegz 9348 elnnz 9355 elz2 9416 gtndiv 9440 prime 9444 btwnz 9464 qre 9718 elpq 9742 elpqb 9743 nnrp 9757 nnledivrp 9860 fzo1fzo0n0 10278 elfzo0le 10280 fzonmapblen 10282 ubmelfzo 10295 fzonn0p1p1 10308 elfzom1p1elfzo 10309 ubmelm1fzo 10321 subfzo0 10337 adddivflid 10401 flltdivnn0lt 10413 intfracq 10431 flqdiv 10432 m1modnnsub1 10481 addmodid 10483 modfzo0difsn 10506 nnlesq 10754 facndiv 10850 faclbnd 10852 faclbnd3 10854 bcval5 10874 seq3coll 10953 caucvgre 11165 efaddlem 11858 nndivdvds 11980 nno 12090 nnoddm1d2 12094 divalglemnn 12102 divalg2 12110 ndvdsadd 12115 gcdmultiple 12214 gcdmultiplez 12215 gcdzeq 12216 sqgcd 12223 dvdssqlem 12224 lcmgcdlem 12272 coprmgcdb 12283 qredeq 12291 qredeu 12292 prmdvdsfz 12334 sqrt2irr 12357 divdenle 12392 phibndlem 12411 hashgcdlem 12433 oddprm 12455 pythagtriplem10 12465 pythagtriplem12 12471 pythagtriplem14 12473 pythagtriplem16 12475 pythagtriplem19 12478 pclemub 12483 pc2dvds 12526 pcmpt 12539 fldivp1 12544 pcbc 12547 infpnlem1 12555 oddennn 12636 exmidunben 12670 mulgnegnn 13340 znidomb 14292 lgsval4a 15371 gausslemma2dlem0c 15400 gausslemma2dlem0d 15401 gausslemma2dlem1a 15407 gausslemma2dlem2 15411 gausslemma2dlem3 15412 lgsquadlem1 15426 lgsquadlem2 15427 2lgslem1a1 15435 |
| Copyright terms: Public domain | W3C validator |