| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9040 | . 2 ⊢ ℕ ⊆ ℝ | |
| 2 | 1 | sseli 3189 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ℝcr 7924 ℕcn 9036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-int 3886 df-inn 9037 |
| This theorem is referenced by: nnrei 9045 peano2nn 9048 nn1suc 9055 nnge1 9059 nnle1eq1 9060 nngt0 9061 nnnlt1 9062 nnap0 9065 nn2ge 9069 nn1gt1 9070 nndivre 9072 nnrecgt0 9074 nnsub 9075 arch 9292 nnrecl 9293 bndndx 9294 nn0ge0 9320 0mnnnnn0 9327 nnnegz 9375 elnnz 9382 elz2 9444 gtndiv 9468 prime 9472 btwnz 9492 qre 9746 elpq 9770 elpqb 9771 nnrp 9785 nnledivrp 9888 fzo1fzo0n0 10307 elfzo0le 10309 fzonmapblen 10311 ubmelfzo 10329 fzonn0p1p1 10342 elfzom1p1elfzo 10343 ubmelm1fzo 10355 subfzo0 10371 adddivflid 10435 flltdivnn0lt 10447 intfracq 10465 flqdiv 10466 m1modnnsub1 10515 addmodid 10517 modfzo0difsn 10540 nnlesq 10788 facndiv 10884 faclbnd 10886 faclbnd3 10888 bcval5 10908 seq3coll 10987 ccatval21sw 11061 caucvgre 11292 efaddlem 11985 nndivdvds 12107 nno 12217 nnoddm1d2 12221 divalglemnn 12229 divalg2 12237 ndvdsadd 12242 gcdmultiple 12341 gcdmultiplez 12342 gcdzeq 12343 sqgcd 12350 dvdssqlem 12351 lcmgcdlem 12399 coprmgcdb 12410 qredeq 12418 qredeu 12419 prmdvdsfz 12461 sqrt2irr 12484 divdenle 12519 phibndlem 12538 hashgcdlem 12560 oddprm 12582 pythagtriplem10 12592 pythagtriplem12 12598 pythagtriplem14 12600 pythagtriplem16 12602 pythagtriplem19 12605 pclemub 12610 pc2dvds 12653 pcmpt 12666 fldivp1 12671 pcbc 12674 infpnlem1 12682 oddennn 12763 exmidunben 12797 mulgnegnn 13468 znidomb 14420 lgsval4a 15499 gausslemma2dlem0c 15528 gausslemma2dlem0d 15529 gausslemma2dlem1a 15535 gausslemma2dlem2 15539 gausslemma2dlem3 15540 lgsquadlem1 15554 lgsquadlem2 15555 2lgslem1a1 15563 |
| Copyright terms: Public domain | W3C validator |