| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9039 | . 2 ⊢ ℕ ⊆ ℝ | |
| 2 | 1 | sseli 3188 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ℝcr 7923 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-int 3885 df-inn 9036 |
| This theorem is referenced by: nnrei 9044 peano2nn 9047 nn1suc 9054 nnge1 9058 nnle1eq1 9059 nngt0 9060 nnnlt1 9061 nnap0 9064 nn2ge 9068 nn1gt1 9069 nndivre 9071 nnrecgt0 9073 nnsub 9074 arch 9291 nnrecl 9292 bndndx 9293 nn0ge0 9319 0mnnnnn0 9326 nnnegz 9374 elnnz 9381 elz2 9443 gtndiv 9467 prime 9471 btwnz 9491 qre 9745 elpq 9769 elpqb 9770 nnrp 9784 nnledivrp 9887 fzo1fzo0n0 10305 elfzo0le 10307 fzonmapblen 10309 ubmelfzo 10327 fzonn0p1p1 10340 elfzom1p1elfzo 10341 ubmelm1fzo 10353 subfzo0 10369 adddivflid 10433 flltdivnn0lt 10445 intfracq 10463 flqdiv 10464 m1modnnsub1 10513 addmodid 10515 modfzo0difsn 10538 nnlesq 10786 facndiv 10882 faclbnd 10884 faclbnd3 10886 bcval5 10906 seq3coll 10985 ccatval21sw 11059 caucvgre 11263 efaddlem 11956 nndivdvds 12078 nno 12188 nnoddm1d2 12192 divalglemnn 12200 divalg2 12208 ndvdsadd 12213 gcdmultiple 12312 gcdmultiplez 12313 gcdzeq 12314 sqgcd 12321 dvdssqlem 12322 lcmgcdlem 12370 coprmgcdb 12381 qredeq 12389 qredeu 12390 prmdvdsfz 12432 sqrt2irr 12455 divdenle 12490 phibndlem 12509 hashgcdlem 12531 oddprm 12553 pythagtriplem10 12563 pythagtriplem12 12569 pythagtriplem14 12571 pythagtriplem16 12573 pythagtriplem19 12576 pclemub 12581 pc2dvds 12624 pcmpt 12637 fldivp1 12642 pcbc 12645 infpnlem1 12653 oddennn 12734 exmidunben 12768 mulgnegnn 13439 znidomb 14391 lgsval4a 15470 gausslemma2dlem0c 15499 gausslemma2dlem0d 15500 gausslemma2dlem1a 15506 gausslemma2dlem2 15510 gausslemma2dlem3 15511 lgsquadlem1 15525 lgsquadlem2 15526 2lgslem1a1 15534 |
| Copyright terms: Public domain | W3C validator |