![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnre | GIF version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 8524 | . 2 ⊢ ℕ ⊆ ℝ | |
2 | 1 | sseli 3035 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1445 ℝcr 7446 ℕcn 8520 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-cnex 7533 ax-resscn 7534 ax-1re 7536 ax-addrcl 7539 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-v 2635 df-in 3019 df-ss 3026 df-int 3711 df-inn 8521 |
This theorem is referenced by: nnrei 8529 peano2nn 8532 nn1suc 8539 nnge1 8543 nnle1eq1 8544 nngt0 8545 nnnlt1 8546 nnap0 8549 nn2ge 8553 nn1gt1 8554 nndivre 8556 nnrecgt0 8558 nnsub 8559 arch 8768 nnrecl 8769 bndndx 8770 nn0ge0 8796 0mnnnnn0 8803 nnnegz 8851 elnnz 8858 elz2 8916 gtndiv 8940 prime 8944 btwnz 8964 qre 9209 nnrp 9242 nnledivrp 9336 fzo1fzo0n0 9743 elfzo0le 9745 fzonmapblen 9747 ubmelfzo 9760 fzonn0p1p1 9773 elfzom1p1elfzo 9774 ubmelm1fzo 9786 subfzo0 9802 adddivflid 9848 flltdivnn0lt 9860 intfracq 9876 flqdiv 9877 m1modnnsub1 9926 addmodid 9928 modfzo0difsn 9951 nnlesq 10173 facndiv 10262 faclbnd 10264 faclbnd3 10266 bcval5 10286 seq3coll 10362 caucvgre 10529 efaddlem 11113 nndivdvds 11229 nno 11333 nnoddm1d2 11337 divalglemnn 11345 divalg2 11353 ndvdsadd 11358 gcdmultiple 11436 gcdmultiplez 11437 gcdzeq 11438 sqgcd 11445 dvdssqlem 11446 lcmgcdlem 11486 coprmgcdb 11497 qredeq 11505 qredeu 11506 prmdvdsfz 11547 sqrt2irr 11568 divdenle 11602 phibndlem 11619 hashgcdlem 11630 oddennn 11632 |
Copyright terms: Public domain | W3C validator |