| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9110 | . 2 ⊢ ℕ ⊆ ℝ | |
| 2 | 1 | sseli 3220 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℝcr 7994 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3923 df-inn 9107 |
| This theorem is referenced by: nnrei 9115 peano2nn 9118 nn1suc 9125 nnge1 9129 nnle1eq1 9130 nngt0 9131 nnnlt1 9132 nnap0 9135 nn2ge 9139 nn1gt1 9140 nndivre 9142 nnrecgt0 9144 nnsub 9145 arch 9362 nnrecl 9363 bndndx 9364 nn0ge0 9390 0mnnnnn0 9397 nnnegz 9445 elnnz 9452 elz2 9514 gtndiv 9538 prime 9542 btwnz 9562 qre 9816 elpq 9840 elpqb 9841 nnrp 9855 nnledivrp 9958 fzo1fzo0n0 10379 elfzo0le 10381 fzonmapblen 10383 ubmelfzo 10401 fzonn0p1p1 10414 elfzom1p1elfzo 10415 ubmelm1fzo 10427 subfzo0 10443 adddivflid 10507 flltdivnn0lt 10519 intfracq 10537 flqdiv 10538 m1modnnsub1 10587 addmodid 10589 modfzo0difsn 10612 nnlesq 10860 facndiv 10956 faclbnd 10958 faclbnd3 10960 bcval5 10980 seq3coll 11059 ccatval21sw 11135 caucvgre 11487 efaddlem 12180 nndivdvds 12302 nno 12412 nnoddm1d2 12416 divalglemnn 12424 divalg2 12432 ndvdsadd 12437 gcdmultiple 12536 gcdmultiplez 12537 gcdzeq 12538 sqgcd 12545 dvdssqlem 12546 lcmgcdlem 12594 coprmgcdb 12605 qredeq 12613 qredeu 12614 prmdvdsfz 12656 sqrt2irr 12679 divdenle 12714 phibndlem 12733 hashgcdlem 12755 oddprm 12777 pythagtriplem10 12787 pythagtriplem12 12793 pythagtriplem14 12795 pythagtriplem16 12797 pythagtriplem19 12800 pclemub 12805 pc2dvds 12848 pcmpt 12861 fldivp1 12866 pcbc 12869 infpnlem1 12877 oddennn 12958 exmidunben 12992 mulgnegnn 13664 znidomb 14616 lgsval4a 15695 gausslemma2dlem0c 15724 gausslemma2dlem0d 15725 gausslemma2dlem1a 15731 gausslemma2dlem2 15735 gausslemma2dlem3 15736 lgsquadlem1 15750 lgsquadlem2 15751 2lgslem1a1 15759 |
| Copyright terms: Public domain | W3C validator |