| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnre | GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssre 9075 | . 2 ⊢ ℕ ⊆ ℝ | |
| 2 | 1 | sseli 3197 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ℝcr 7959 ℕcn 9071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-int 3900 df-inn 9072 |
| This theorem is referenced by: nnrei 9080 peano2nn 9083 nn1suc 9090 nnge1 9094 nnle1eq1 9095 nngt0 9096 nnnlt1 9097 nnap0 9100 nn2ge 9104 nn1gt1 9105 nndivre 9107 nnrecgt0 9109 nnsub 9110 arch 9327 nnrecl 9328 bndndx 9329 nn0ge0 9355 0mnnnnn0 9362 nnnegz 9410 elnnz 9417 elz2 9479 gtndiv 9503 prime 9507 btwnz 9527 qre 9781 elpq 9805 elpqb 9806 nnrp 9820 nnledivrp 9923 fzo1fzo0n0 10344 elfzo0le 10346 fzonmapblen 10348 ubmelfzo 10366 fzonn0p1p1 10379 elfzom1p1elfzo 10380 ubmelm1fzo 10392 subfzo0 10408 adddivflid 10472 flltdivnn0lt 10484 intfracq 10502 flqdiv 10503 m1modnnsub1 10552 addmodid 10554 modfzo0difsn 10577 nnlesq 10825 facndiv 10921 faclbnd 10923 faclbnd3 10925 bcval5 10945 seq3coll 11024 ccatval21sw 11099 caucvgre 11407 efaddlem 12100 nndivdvds 12222 nno 12332 nnoddm1d2 12336 divalglemnn 12344 divalg2 12352 ndvdsadd 12357 gcdmultiple 12456 gcdmultiplez 12457 gcdzeq 12458 sqgcd 12465 dvdssqlem 12466 lcmgcdlem 12514 coprmgcdb 12525 qredeq 12533 qredeu 12534 prmdvdsfz 12576 sqrt2irr 12599 divdenle 12634 phibndlem 12653 hashgcdlem 12675 oddprm 12697 pythagtriplem10 12707 pythagtriplem12 12713 pythagtriplem14 12715 pythagtriplem16 12717 pythagtriplem19 12720 pclemub 12725 pc2dvds 12768 pcmpt 12781 fldivp1 12786 pcbc 12789 infpnlem1 12797 oddennn 12878 exmidunben 12912 mulgnegnn 13583 znidomb 14535 lgsval4a 15614 gausslemma2dlem0c 15643 gausslemma2dlem0d 15644 gausslemma2dlem1a 15650 gausslemma2dlem2 15654 gausslemma2dlem3 15655 lgsquadlem1 15669 lgsquadlem2 15670 2lgslem1a1 15678 |
| Copyright terms: Public domain | W3C validator |