![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninfdclemf1 | GIF version |
Description: Lemma for nninfdc 12515. The function from nninfdclemf 12511 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.) |
Ref | Expression |
---|---|
nninfdclemf.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
nninfdclemf.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
nninfdclemf.nb | ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
nninfdclemf.j | ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
nninfdclemf.f | ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
Ref | Expression |
---|---|
nninfdclemf1 | ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfdclemf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
2 | nninfdclemf.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
3 | nninfdclemf.nb | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | |
4 | nninfdclemf.j | . . 3 ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | |
5 | nninfdclemf.f | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | |
6 | 1, 2, 3, 4, 5 | nninfdclemf 12511 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
7 | fveq2 5537 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝐹‘𝑢) = (𝐹‘𝑣)) | |
8 | fveq2 5537 | . . . . 5 ⊢ (𝑢 = 𝑝 → (𝐹‘𝑢) = (𝐹‘𝑝)) | |
9 | fveq2 5537 | . . . . 5 ⊢ (𝑢 = 𝑞 → (𝐹‘𝑢) = (𝐹‘𝑞)) | |
10 | nnssre 8958 | . . . . 5 ⊢ ℕ ⊆ ℝ | |
11 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → 𝐴 ⊆ ℕ) |
12 | 6 | ffvelcdmda 5675 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ 𝐴) |
13 | 11, 12 | sseldd 3171 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℕ) |
14 | 13 | nnred 8967 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℝ) |
15 | 1 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝐴 ⊆ ℕ) |
16 | 2 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
17 | 3 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
18 | 4 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
19 | simplrl 535 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 ∈ ℕ) | |
20 | simplrr 536 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑣 ∈ ℕ) | |
21 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 < 𝑣) | |
22 | 15, 16, 17, 18, 5, 19, 20, 21 | nninfdclemlt 12513 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐹‘𝑢) < (𝐹‘𝑣)) |
23 | 22 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) → (𝑢 < 𝑣 → (𝐹‘𝑢) < (𝐹‘𝑣))) |
24 | 7, 8, 9, 10, 14, 23 | eqord1 8475 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 = 𝑞 ↔ (𝐹‘𝑝) = (𝐹‘𝑞))) |
25 | 24 | biimprd 158 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
26 | 25 | ralrimivva 2572 | . 2 ⊢ (𝜑 → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
27 | dff13 5793 | . 2 ⊢ (𝐹:ℕ–1-1→𝐴 ↔ (𝐹:ℕ⟶𝐴 ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞))) | |
28 | 6, 26, 27 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 ∩ cin 3143 ⊆ wss 3144 class class class wbr 4021 ↦ cmpt 4082 ⟶wf 5234 –1-1→wf1 5235 ‘cfv 5238 (class class class)co 5900 ∈ cmpo 5902 infcinf 7016 ℝcr 7845 1c1 7847 + caddc 7849 < clt 8027 ℕcn 8954 ℤ≥cuz 9563 seqcseq 10484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-po 4317 df-iso 4318 df-iord 4387 df-on 4389 df-ilim 4390 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-isom 5247 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-recs 6334 df-frec 6420 df-sup 7017 df-inf 7018 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-inn 8955 df-n0 9212 df-z 9289 df-uz 9564 df-fz 10045 df-fzo 10179 df-seqfrec 10485 |
This theorem is referenced by: nninfdc 12515 |
Copyright terms: Public domain | W3C validator |