Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfdclemf1 | GIF version |
Description: Lemma for nninfdc 12382. The function from nninfdclemf 12378 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.) |
Ref | Expression |
---|---|
nninfdclemf.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
nninfdclemf.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
nninfdclemf.nb | ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
nninfdclemf.j | ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
nninfdclemf.f | ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
Ref | Expression |
---|---|
nninfdclemf1 | ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfdclemf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
2 | nninfdclemf.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
3 | nninfdclemf.nb | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | |
4 | nninfdclemf.j | . . 3 ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | |
5 | nninfdclemf.f | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | |
6 | 1, 2, 3, 4, 5 | nninfdclemf 12378 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
7 | fveq2 5485 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝐹‘𝑢) = (𝐹‘𝑣)) | |
8 | fveq2 5485 | . . . . 5 ⊢ (𝑢 = 𝑝 → (𝐹‘𝑢) = (𝐹‘𝑝)) | |
9 | fveq2 5485 | . . . . 5 ⊢ (𝑢 = 𝑞 → (𝐹‘𝑢) = (𝐹‘𝑞)) | |
10 | nnssre 8857 | . . . . 5 ⊢ ℕ ⊆ ℝ | |
11 | 1 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → 𝐴 ⊆ ℕ) |
12 | 6 | ffvelrnda 5619 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ 𝐴) |
13 | 11, 12 | sseldd 3142 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℕ) |
14 | 13 | nnred 8866 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℝ) |
15 | 1 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝐴 ⊆ ℕ) |
16 | 2 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
17 | 3 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
18 | 4 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
19 | simplrl 525 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 ∈ ℕ) | |
20 | simplrr 526 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑣 ∈ ℕ) | |
21 | simpr 109 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 < 𝑣) | |
22 | 15, 16, 17, 18, 5, 19, 20, 21 | nninfdclemlt 12380 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐹‘𝑢) < (𝐹‘𝑣)) |
23 | 22 | ex 114 | . . . . 5 ⊢ ((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) → (𝑢 < 𝑣 → (𝐹‘𝑢) < (𝐹‘𝑣))) |
24 | 7, 8, 9, 10, 14, 23 | eqord1 8377 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 = 𝑞 ↔ (𝐹‘𝑝) = (𝐹‘𝑞))) |
25 | 24 | biimprd 157 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
26 | 25 | ralrimivva 2547 | . 2 ⊢ (𝜑 → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
27 | dff13 5735 | . 2 ⊢ (𝐹:ℕ–1-1→𝐴 ↔ (𝐹:ℕ⟶𝐴 ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞))) | |
28 | 6, 26, 27 | sylanbrc 414 | 1 ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ∀wral 2443 ∃wrex 2444 ∩ cin 3114 ⊆ wss 3115 class class class wbr 3981 ↦ cmpt 4042 ⟶wf 5183 –1-1→wf1 5184 ‘cfv 5187 (class class class)co 5841 ∈ cmpo 5843 infcinf 6944 ℝcr 7748 1c1 7750 + caddc 7752 < clt 7929 ℕcn 8853 ℤ≥cuz 9462 seqcseq 10376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-fz 9941 df-fzo 10074 df-seqfrec 10377 |
This theorem is referenced by: nninfdc 12382 |
Copyright terms: Public domain | W3C validator |