ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemf1 GIF version

Theorem nninfdclemf1 12456
Description: Lemma for nninfdc 12457. The function from nninfdclemf 12453 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
Assertion
Ref Expression
nninfdclemf1 (𝜑𝐹:ℕ–1-1𝐴)
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴   𝑦,𝐴,𝑧   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑦,𝐽,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemf1
Dummy variables 𝑝 𝑞 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemf.dc . . 3 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
3 nninfdclemf.nb . . 3 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
4 nninfdclemf.j . . 3 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
5 nninfdclemf.f . . 3 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
61, 2, 3, 4, 5nninfdclemf 12453 . 2 (𝜑𝐹:ℕ⟶𝐴)
7 fveq2 5517 . . . . 5 (𝑢 = 𝑣 → (𝐹𝑢) = (𝐹𝑣))
8 fveq2 5517 . . . . 5 (𝑢 = 𝑝 → (𝐹𝑢) = (𝐹𝑝))
9 fveq2 5517 . . . . 5 (𝑢 = 𝑞 → (𝐹𝑢) = (𝐹𝑞))
10 nnssre 8926 . . . . 5 ℕ ⊆ ℝ
111adantr 276 . . . . . . 7 ((𝜑𝑢 ∈ ℕ) → 𝐴 ⊆ ℕ)
126ffvelcdmda 5654 . . . . . . 7 ((𝜑𝑢 ∈ ℕ) → (𝐹𝑢) ∈ 𝐴)
1311, 12sseldd 3158 . . . . . 6 ((𝜑𝑢 ∈ ℕ) → (𝐹𝑢) ∈ ℕ)
1413nnred 8935 . . . . 5 ((𝜑𝑢 ∈ ℕ) → (𝐹𝑢) ∈ ℝ)
151ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝐴 ⊆ ℕ)
162ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
173ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
184ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐽𝐴 ∧ 1 < 𝐽))
19 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 ∈ ℕ)
20 simplrr 536 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑣 ∈ ℕ)
21 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 < 𝑣)
2215, 16, 17, 18, 5, 19, 20, 21nninfdclemlt 12455 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐹𝑢) < (𝐹𝑣))
2322ex 115 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) → (𝑢 < 𝑣 → (𝐹𝑢) < (𝐹𝑣)))
247, 8, 9, 10, 14, 23eqord1 8443 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 = 𝑞 ↔ (𝐹𝑝) = (𝐹𝑞)))
2524biimprd 158 . . 3 ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑝) = (𝐹𝑞) → 𝑝 = 𝑞))
2625ralrimivva 2559 . 2 (𝜑 → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹𝑝) = (𝐹𝑞) → 𝑝 = 𝑞))
27 dff13 5772 . 2 (𝐹:ℕ–1-1𝐴 ↔ (𝐹:ℕ⟶𝐴 ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹𝑝) = (𝐹𝑞) → 𝑝 = 𝑞)))
286, 26, 27sylanbrc 417 1 (𝜑𝐹:ℕ–1-1𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cin 3130  wss 3131   class class class wbr 4005  cmpt 4066  wf 5214  1-1wf1 5215  cfv 5218  (class class class)co 5878  cmpo 5880  infcinf 6985  cr 7813  1c1 7815   + caddc 7817   < clt 7995  cn 8922  cuz 9531  seqcseq 10448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012  df-fzo 10146  df-seqfrec 10449
This theorem is referenced by:  nninfdc  12457
  Copyright terms: Public domain W3C validator