![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninfdclemf1 | GIF version |
Description: Lemma for nninfdc 12613. The function from nninfdclemf 12609 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.) |
Ref | Expression |
---|---|
nninfdclemf.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
nninfdclemf.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
nninfdclemf.nb | ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
nninfdclemf.j | ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
nninfdclemf.f | ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
Ref | Expression |
---|---|
nninfdclemf1 | ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfdclemf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
2 | nninfdclemf.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
3 | nninfdclemf.nb | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | |
4 | nninfdclemf.j | . . 3 ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | |
5 | nninfdclemf.f | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | |
6 | 1, 2, 3, 4, 5 | nninfdclemf 12609 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
7 | fveq2 5555 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝐹‘𝑢) = (𝐹‘𝑣)) | |
8 | fveq2 5555 | . . . . 5 ⊢ (𝑢 = 𝑝 → (𝐹‘𝑢) = (𝐹‘𝑝)) | |
9 | fveq2 5555 | . . . . 5 ⊢ (𝑢 = 𝑞 → (𝐹‘𝑢) = (𝐹‘𝑞)) | |
10 | nnssre 8988 | . . . . 5 ⊢ ℕ ⊆ ℝ | |
11 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → 𝐴 ⊆ ℕ) |
12 | 6 | ffvelcdmda 5694 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ 𝐴) |
13 | 11, 12 | sseldd 3181 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℕ) |
14 | 13 | nnred 8997 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℝ) |
15 | 1 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝐴 ⊆ ℕ) |
16 | 2 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
17 | 3 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
18 | 4 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
19 | simplrl 535 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 ∈ ℕ) | |
20 | simplrr 536 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑣 ∈ ℕ) | |
21 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 < 𝑣) | |
22 | 15, 16, 17, 18, 5, 19, 20, 21 | nninfdclemlt 12611 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐹‘𝑢) < (𝐹‘𝑣)) |
23 | 22 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) → (𝑢 < 𝑣 → (𝐹‘𝑢) < (𝐹‘𝑣))) |
24 | 7, 8, 9, 10, 14, 23 | eqord1 8504 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 = 𝑞 ↔ (𝐹‘𝑝) = (𝐹‘𝑞))) |
25 | 24 | biimprd 158 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
26 | 25 | ralrimivva 2576 | . 2 ⊢ (𝜑 → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
27 | dff13 5812 | . 2 ⊢ (𝐹:ℕ–1-1→𝐴 ↔ (𝐹:ℕ⟶𝐴 ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞))) | |
28 | 6, 26, 27 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ∩ cin 3153 ⊆ wss 3154 class class class wbr 4030 ↦ cmpt 4091 ⟶wf 5251 –1-1→wf1 5252 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 infcinf 7044 ℝcr 7873 1c1 7875 + caddc 7877 < clt 8056 ℕcn 8984 ℤ≥cuz 9595 seqcseq 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 df-seqfrec 10522 |
This theorem is referenced by: nninfdc 12613 |
Copyright terms: Public domain | W3C validator |