| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdclemf1 | GIF version | ||
| Description: Lemma for nninfdc 12795. The function from nninfdclemf 12791 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfdclemf.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| nninfdclemf.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| nninfdclemf.nb | ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| nninfdclemf.j | ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
| nninfdclemf.f | ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
| Ref | Expression |
|---|---|
| nninfdclemf1 | ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfdclemf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 2 | nninfdclemf.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
| 3 | nninfdclemf.nb | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | |
| 4 | nninfdclemf.j | . . 3 ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | |
| 5 | nninfdclemf.f | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | |
| 6 | 1, 2, 3, 4, 5 | nninfdclemf 12791 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| 7 | fveq2 5575 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝐹‘𝑢) = (𝐹‘𝑣)) | |
| 8 | fveq2 5575 | . . . . 5 ⊢ (𝑢 = 𝑝 → (𝐹‘𝑢) = (𝐹‘𝑝)) | |
| 9 | fveq2 5575 | . . . . 5 ⊢ (𝑢 = 𝑞 → (𝐹‘𝑢) = (𝐹‘𝑞)) | |
| 10 | nnssre 9039 | . . . . 5 ⊢ ℕ ⊆ ℝ | |
| 11 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → 𝐴 ⊆ ℕ) |
| 12 | 6 | ffvelcdmda 5714 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ 𝐴) |
| 13 | 11, 12 | sseldd 3193 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℕ) |
| 14 | 13 | nnred 9048 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℝ) |
| 15 | 1 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝐴 ⊆ ℕ) |
| 16 | 2 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| 17 | 3 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| 18 | 4 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
| 19 | simplrl 535 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 ∈ ℕ) | |
| 20 | simplrr 536 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑣 ∈ ℕ) | |
| 21 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 < 𝑣) | |
| 22 | 15, 16, 17, 18, 5, 19, 20, 21 | nninfdclemlt 12793 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐹‘𝑢) < (𝐹‘𝑣)) |
| 23 | 22 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) → (𝑢 < 𝑣 → (𝐹‘𝑢) < (𝐹‘𝑣))) |
| 24 | 7, 8, 9, 10, 14, 23 | eqord1 8555 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 = 𝑞 ↔ (𝐹‘𝑝) = (𝐹‘𝑞))) |
| 25 | 24 | biimprd 158 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
| 26 | 25 | ralrimivva 2587 | . 2 ⊢ (𝜑 → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
| 27 | dff13 5836 | . 2 ⊢ (𝐹:ℕ–1-1→𝐴 ↔ (𝐹:ℕ⟶𝐴 ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞))) | |
| 28 | 6, 26, 27 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 ∩ cin 3164 ⊆ wss 3165 class class class wbr 4043 ↦ cmpt 4104 ⟶wf 5266 –1-1→wf1 5267 ‘cfv 5270 (class class class)co 5943 ∈ cmpo 5945 infcinf 7084 ℝcr 7923 1c1 7925 + caddc 7927 < clt 8106 ℕcn 9035 ℤ≥cuz 9647 seqcseq 10590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-fzo 10264 df-seqfrec 10591 |
| This theorem is referenced by: nninfdc 12795 |
| Copyright terms: Public domain | W3C validator |