| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdclemf1 | GIF version | ||
| Description: Lemma for nninfdc 12695. The function from nninfdclemf 12691 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfdclemf.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| nninfdclemf.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| nninfdclemf.nb | ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| nninfdclemf.j | ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
| nninfdclemf.f | ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
| Ref | Expression |
|---|---|
| nninfdclemf1 | ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfdclemf.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 2 | nninfdclemf.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
| 3 | nninfdclemf.nb | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | |
| 4 | nninfdclemf.j | . . 3 ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | |
| 5 | nninfdclemf.f | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | |
| 6 | 1, 2, 3, 4, 5 | nninfdclemf 12691 | . 2 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| 7 | fveq2 5561 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝐹‘𝑢) = (𝐹‘𝑣)) | |
| 8 | fveq2 5561 | . . . . 5 ⊢ (𝑢 = 𝑝 → (𝐹‘𝑢) = (𝐹‘𝑝)) | |
| 9 | fveq2 5561 | . . . . 5 ⊢ (𝑢 = 𝑞 → (𝐹‘𝑢) = (𝐹‘𝑞)) | |
| 10 | nnssre 9011 | . . . . 5 ⊢ ℕ ⊆ ℝ | |
| 11 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → 𝐴 ⊆ ℕ) |
| 12 | 6 | ffvelcdmda 5700 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ 𝐴) |
| 13 | 11, 12 | sseldd 3185 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℕ) |
| 14 | 13 | nnred 9020 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ ℕ) → (𝐹‘𝑢) ∈ ℝ) |
| 15 | 1 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝐴 ⊆ ℕ) |
| 16 | 2 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| 17 | 3 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| 18 | 4 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
| 19 | simplrl 535 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 ∈ ℕ) | |
| 20 | simplrr 536 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑣 ∈ ℕ) | |
| 21 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 < 𝑣) | |
| 22 | 15, 16, 17, 18, 5, 19, 20, 21 | nninfdclemlt 12693 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐹‘𝑢) < (𝐹‘𝑣)) |
| 23 | 22 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) → (𝑢 < 𝑣 → (𝐹‘𝑢) < (𝐹‘𝑣))) |
| 24 | 7, 8, 9, 10, 14, 23 | eqord1 8527 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 = 𝑞 ↔ (𝐹‘𝑝) = (𝐹‘𝑞))) |
| 25 | 24 | biimprd 158 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
| 26 | 25 | ralrimivva 2579 | . 2 ⊢ (𝜑 → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞)) |
| 27 | dff13 5818 | . 2 ⊢ (𝐹:ℕ–1-1→𝐴 ↔ (𝐹:ℕ⟶𝐴 ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹‘𝑝) = (𝐹‘𝑞) → 𝑝 = 𝑞))) | |
| 28 | 6, 26, 27 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∩ cin 3156 ⊆ wss 3157 class class class wbr 4034 ↦ cmpt 4095 ⟶wf 5255 –1-1→wf1 5256 ‘cfv 5259 (class class class)co 5925 ∈ cmpo 5927 infcinf 7058 ℝcr 7895 1c1 7897 + caddc 7899 < clt 8078 ℕcn 9007 ℤ≥cuz 9618 seqcseq 10556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-fzo 10235 df-seqfrec 10557 |
| This theorem is referenced by: nninfdc 12695 |
| Copyright terms: Public domain | W3C validator |