ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemf1 GIF version

Theorem nninfdclemf1 12669
Description: Lemma for nninfdc 12670. The function from nninfdclemf 12666 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
Assertion
Ref Expression
nninfdclemf1 (𝜑𝐹:ℕ–1-1𝐴)
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴   𝑦,𝐴,𝑧   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑦,𝐽,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)

Proof of Theorem nninfdclemf1
Dummy variables 𝑝 𝑞 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 nninfdclemf.dc . . 3 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
3 nninfdclemf.nb . . 3 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
4 nninfdclemf.j . . 3 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
5 nninfdclemf.f . . 3 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
61, 2, 3, 4, 5nninfdclemf 12666 . 2 (𝜑𝐹:ℕ⟶𝐴)
7 fveq2 5558 . . . . 5 (𝑢 = 𝑣 → (𝐹𝑢) = (𝐹𝑣))
8 fveq2 5558 . . . . 5 (𝑢 = 𝑝 → (𝐹𝑢) = (𝐹𝑝))
9 fveq2 5558 . . . . 5 (𝑢 = 𝑞 → (𝐹𝑢) = (𝐹𝑞))
10 nnssre 8994 . . . . 5 ℕ ⊆ ℝ
111adantr 276 . . . . . . 7 ((𝜑𝑢 ∈ ℕ) → 𝐴 ⊆ ℕ)
126ffvelcdmda 5697 . . . . . . 7 ((𝜑𝑢 ∈ ℕ) → (𝐹𝑢) ∈ 𝐴)
1311, 12sseldd 3184 . . . . . 6 ((𝜑𝑢 ∈ ℕ) → (𝐹𝑢) ∈ ℕ)
1413nnred 9003 . . . . 5 ((𝜑𝑢 ∈ ℕ) → (𝐹𝑢) ∈ ℝ)
151ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝐴 ⊆ ℕ)
162ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
173ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
184ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐽𝐴 ∧ 1 < 𝐽))
19 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 ∈ ℕ)
20 simplrr 536 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑣 ∈ ℕ)
21 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → 𝑢 < 𝑣)
2215, 16, 17, 18, 5, 19, 20, 21nninfdclemlt 12668 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) ∧ 𝑢 < 𝑣) → (𝐹𝑢) < (𝐹𝑣))
2322ex 115 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℕ ∧ 𝑣 ∈ ℕ)) → (𝑢 < 𝑣 → (𝐹𝑢) < (𝐹𝑣)))
247, 8, 9, 10, 14, 23eqord1 8510 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 = 𝑞 ↔ (𝐹𝑝) = (𝐹𝑞)))
2524biimprd 158 . . 3 ((𝜑 ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑝) = (𝐹𝑞) → 𝑝 = 𝑞))
2625ralrimivva 2579 . 2 (𝜑 → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹𝑝) = (𝐹𝑞) → 𝑝 = 𝑞))
27 dff13 5815 . 2 (𝐹:ℕ–1-1𝐴 ↔ (𝐹:ℕ⟶𝐴 ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ((𝐹𝑝) = (𝐹𝑞) → 𝑝 = 𝑞)))
286, 26, 27sylanbrc 417 1 (𝜑𝐹:ℕ–1-1𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cin 3156  wss 3157   class class class wbr 4033  cmpt 4094  wf 5254  1-1wf1 5255  cfv 5258  (class class class)co 5922  cmpo 5924  infcinf 7049  cr 7878  1c1 7880   + caddc 7882   < clt 8061  cn 8990  cuz 9601  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by:  nninfdc  12670
  Copyright terms: Public domain W3C validator