Step | Hyp | Ref
| Expression |
1 | | clscld.1 |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | ntrval 12904 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | 2 | eqeq1d 2179 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∪ (𝐽
∩ 𝒫 𝑆) =
∅)) |
4 | | notm0 3435 |
. . . 4
⊢ (¬
∃𝑦 𝑦 ∈ ∪ (𝐽 ∩ 𝒫 𝑆) ↔ ∪ (𝐽
∩ 𝒫 𝑆) =
∅) |
5 | | ancom 264 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥)) |
6 | | elin 3310 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆)) |
7 | 6 | anbi1i 455 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥) ↔ ((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥)) |
8 | | anass 399 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
9 | 5, 7, 8 | 3bitri 205 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
10 | 9 | exbii 1598 |
. . . . . . . 8
⊢
(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ ∃𝑥(𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
11 | | eluni 3799 |
. . . . . . . 8
⊢ (𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (𝐽 ∩ 𝒫 𝑆))) |
12 | | df-rex 2454 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑥(𝑥 ∈ 𝐽 ∧ (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥))) |
13 | 10, 11, 12 | 3bitr4i 211 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
14 | 13 | exbii 1598 |
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑦∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
15 | | rexcom4 2753 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐽 ∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑦∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥)) |
16 | | 19.42v 1899 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
17 | 16 | rexbii 2477 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐽 ∃𝑦(𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
18 | 14, 15, 17 | 3bitr2i 207 |
. . . . 5
⊢
(∃𝑦 𝑦 ∈ ∪ (𝐽
∩ 𝒫 𝑆) ↔
∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
19 | 18 | notbii 663 |
. . . 4
⊢ (¬
∃𝑦 𝑦 ∈ ∪ (𝐽 ∩ 𝒫 𝑆) ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
20 | 4, 19 | bitr3i 185 |
. . 3
⊢ (∪ (𝐽
∩ 𝒫 𝑆) =
∅ ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
21 | | ralinexa 2497 |
. . 3
⊢
(∀𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ ¬ ∃𝑥 ∈ 𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦 ∈ 𝑥)) |
22 | | velpw 3573 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆) |
23 | | notm0 3435 |
. . . . 5
⊢ (¬
∃𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅) |
24 | 22, 23 | imbi12i 238 |
. . . 4
⊢ ((𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
25 | 24 | ralbii 2476 |
. . 3
⊢
(∀𝑥 ∈
𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
26 | 20, 21, 25 | 3bitr2i 207 |
. 2
⊢ (∪ (𝐽
∩ 𝒫 𝑆) =
∅ ↔ ∀𝑥
∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅)) |
27 | 3, 26 | bitrdi 195 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅))) |