ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntreq0 GIF version

Theorem ntreq0 12315
Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntreq0 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ntreq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21ntrval 12293 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
32eqeq1d 2148 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ (𝐽 ∩ 𝒫 𝑆) = ∅))
4 notm0 3383 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ (𝐽 ∩ 𝒫 𝑆) = ∅)
5 ancom 264 . . . . . . . . . 10 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥))
6 elin 3259 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑥𝐽𝑥 ∈ 𝒫 𝑆))
76anbi1i 453 . . . . . . . . . 10 ((𝑥 ∈ (𝐽 ∩ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ ((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥))
8 anass 398 . . . . . . . . . 10 (((𝑥𝐽𝑥 ∈ 𝒫 𝑆) ∧ 𝑦𝑥) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
95, 7, 83bitri 205 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ (𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
109exbii 1584 . . . . . . . 8 (∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
11 eluni 3739 . . . . . . . 8 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥(𝑦𝑥𝑥 ∈ (𝐽 ∩ 𝒫 𝑆)))
12 df-rex 2422 . . . . . . . 8 (∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥(𝑥𝐽 ∧ (𝑥 ∈ 𝒫 𝑆𝑦𝑥)))
1310, 11, 123bitr4i 211 . . . . . . 7 (𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
1413exbii 1584 . . . . . 6 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
15 rexcom4 2709 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑦𝑥𝐽 (𝑥 ∈ 𝒫 𝑆𝑦𝑥))
16 19.42v 1878 . . . . . . 7 (∃𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1716rexbii 2442 . . . . . 6 (∃𝑥𝐽𝑦(𝑥 ∈ 𝒫 𝑆𝑦𝑥) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1814, 15, 173bitr2i 207 . . . . 5 (∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
1918notbii 657 . . . 4 (¬ ∃𝑦 𝑦 (𝐽 ∩ 𝒫 𝑆) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
204, 19bitr3i 185 . . 3 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
21 ralinexa 2462 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ¬ ∃𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 ∧ ∃𝑦 𝑦𝑥))
22 velpw 3517 . . . . 5 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
23 notm0 3383 . . . . 5 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
2422, 23imbi12i 238 . . . 4 ((𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ (𝑥𝑆𝑥 = ∅))
2524ralbii 2441 . . 3 (∀𝑥𝐽 (𝑥 ∈ 𝒫 𝑆 → ¬ ∃𝑦 𝑦𝑥) ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
2620, 21, 253bitr2i 207 . 2 ( (𝐽 ∩ 𝒫 𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅))
273, 26syl6bb 195 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  cin 3070  wss 3071  c0 3363  𝒫 cpw 3510   cuni 3736  cfv 5123  Topctop 12178  intcnt 12276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-top 12179  df-ntr 12279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator