| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > npex | GIF version | ||
| Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| npex | ⊢ P ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 7447 | . . . 4 ⊢ Q ∈ V | |
| 2 | 1 | pwex 4217 | . . 3 ⊢ 𝒫 Q ∈ V |
| 3 | 2, 2 | xpex 4779 | . 2 ⊢ (𝒫 Q × 𝒫 Q) ∈ V |
| 4 | npsspw 7555 | . 2 ⊢ P ⊆ (𝒫 Q × 𝒫 Q) | |
| 5 | 3, 4 | ssexi 4172 | 1 ⊢ P ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 𝒫 cpw 3606 × cxp 4662 Qcnq 7364 Pcnp 7375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-qs 6607 df-ni 7388 df-nqqs 7432 df-inp 7550 |
| This theorem is referenced by: suplocexprlem2b 7798 suplocexprlemlub 7808 enrex 7821 addvalex 7928 axcnex 7943 |
| Copyright terms: Public domain | W3C validator |