ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw GIF version

Theorem velpw 3608
Description: Setvar variable membership in a power class (common case). See elpw 3607. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem velpw
StepHypRef Expression
1 vex 2763 . 2 𝑥 ∈ V
21elpw 3607 1 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164  wss 3153  𝒫 cpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by:  ordpwsucss  4599  fabexg  5441  abexssex  6177  qsss  6648  mapval2  6732  pmsspw  6737  uniixp  6775  exmidpw  6964  exmidpweq  6965  pw1fin  6966  pw1dc0el  6967  fival  7029  npsspw  7531  restsspw  12860  subsubrng2  13711  subsubrg2  13742  lssintclm  13880  istopon  14181  isbasis2g  14213  tgval2  14219  unitg  14230  distop  14253  cldss2  14274  ntreq0  14300  discld  14304  neisspw  14316  restdis  14352  cnntr  14393
  Copyright terms: Public domain W3C validator