| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velpw | GIF version | ||
| Description: Setvar variable membership in a power class (common case). See elpw 3626. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 3626 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 ⊆ wss 3170 𝒫 cpw 3620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3622 |
| This theorem is referenced by: ordpwsucss 4622 fabexg 5474 abexssex 6222 qsss 6693 mapval2 6777 pmsspw 6782 uniixp 6820 exmidpw 7019 exmidpweq 7020 pw1fin 7021 pw1dc0el 7022 fival 7086 npsspw 7599 restsspw 13151 subsubrng2 14047 subsubrg2 14078 lssintclm 14216 istopon 14555 isbasis2g 14587 tgval2 14593 unitg 14604 distop 14627 cldss2 14648 ntreq0 14674 discld 14678 neisspw 14690 restdis 14726 cnntr 14767 |
| Copyright terms: Public domain | W3C validator |