ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw GIF version

Theorem velpw 3566
Description: Setvar variable membership in a power class (common case). See elpw 3565. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem velpw
StepHypRef Expression
1 vex 2729 . 2 𝑥 ∈ V
21elpw 3565 1 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2136  wss 3116  𝒫 cpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by:  ordpwsucss  4544  fabexg  5375  abexssex  6093  qsss  6560  mapval2  6644  pmsspw  6649  uniixp  6687  exmidpw  6874  exmidpweq  6875  pw1fin  6876  pw1dc0el  6877  fival  6935  npsspw  7412  restsspw  12566  istopon  12661  isbasis2g  12693  tgval2  12701  unitg  12712  distop  12735  cldss2  12756  ntreq0  12782  discld  12786  neisspw  12798  restdis  12834  cnntr  12875
  Copyright terms: Public domain W3C validator