![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > velpw | GIF version |
Description: Setvar variable membership in a power class (common case). See elpw 3607. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 3607 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 ⊆ wss 3153 𝒫 cpw 3601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 |
This theorem is referenced by: ordpwsucss 4599 fabexg 5441 abexssex 6177 qsss 6648 mapval2 6732 pmsspw 6737 uniixp 6775 exmidpw 6964 exmidpweq 6965 pw1fin 6966 pw1dc0el 6967 fival 7029 npsspw 7531 restsspw 12860 subsubrng2 13711 subsubrg2 13742 lssintclm 13880 istopon 14181 isbasis2g 14213 tgval2 14219 unitg 14230 distop 14253 cldss2 14274 ntreq0 14300 discld 14304 neisspw 14316 restdis 14352 cnntr 14393 |
Copyright terms: Public domain | W3C validator |