ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw GIF version

Theorem velpw 3656
Description: Setvar variable membership in a power class (common case). See elpw 3655. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem velpw
StepHypRef Expression
1 vex 2802 . 2 𝑥 ∈ V
21elpw 3655 1 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  wss 3197  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  ordpwsucss  4658  fabexg  5512  abexssex  6268  qsss  6739  mapval2  6823  pmsspw  6828  uniixp  6866  exmidpw  7066  exmidpweq  7067  pw1fin  7068  pw1dc0el  7069  fival  7133  npsspw  7654  restsspw  13277  subsubrng2  14173  subsubrg2  14204  lssintclm  14342  istopon  14681  isbasis2g  14713  tgval2  14719  unitg  14730  distop  14753  cldss2  14774  ntreq0  14800  discld  14804  neisspw  14816  restdis  14852  cnntr  14893
  Copyright terms: Public domain W3C validator