Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > velpw | GIF version |
Description: Setvar variable membership in a power class (common case). See elpw 3565. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 3565 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 ⊆ wss 3116 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: ordpwsucss 4544 fabexg 5375 abexssex 6093 qsss 6560 mapval2 6644 pmsspw 6649 uniixp 6687 exmidpw 6874 exmidpweq 6875 pw1fin 6876 pw1dc0el 6877 fival 6935 npsspw 7412 restsspw 12566 istopon 12661 isbasis2g 12693 tgval2 12701 unitg 12712 distop 12735 cldss2 12756 ntreq0 12782 discld 12786 neisspw 12798 restdis 12834 cnntr 12875 |
Copyright terms: Public domain | W3C validator |