ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw GIF version

Theorem velpw 3627
Description: Setvar variable membership in a power class (common case). See elpw 3626. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem velpw
StepHypRef Expression
1 vex 2776 . 2 𝑥 ∈ V
21elpw 3626 1 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2177  wss 3170  𝒫 cpw 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-pw 3622
This theorem is referenced by:  ordpwsucss  4622  fabexg  5474  abexssex  6222  qsss  6693  mapval2  6777  pmsspw  6782  uniixp  6820  exmidpw  7019  exmidpweq  7020  pw1fin  7021  pw1dc0el  7022  fival  7086  npsspw  7599  restsspw  13151  subsubrng2  14047  subsubrg2  14078  lssintclm  14216  istopon  14555  isbasis2g  14587  tgval2  14593  unitg  14604  distop  14627  cldss2  14648  ntreq0  14674  discld  14678  neisspw  14690  restdis  14726  cnntr  14767
  Copyright terms: Public domain W3C validator