Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > velpw | GIF version |
Description: Setvar variable membership in a power class (common case). See elpw 3572. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw | ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 3572 | 1 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2141 ⊆ wss 3121 𝒫 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: ordpwsucss 4551 fabexg 5385 abexssex 6104 qsss 6572 mapval2 6656 pmsspw 6661 uniixp 6699 exmidpw 6886 exmidpweq 6887 pw1fin 6888 pw1dc0el 6889 fival 6947 npsspw 7433 restsspw 12589 istopon 12805 isbasis2g 12837 tgval2 12845 unitg 12856 distop 12879 cldss2 12900 ntreq0 12926 discld 12930 neisspw 12942 restdis 12978 cnntr 13019 |
Copyright terms: Public domain | W3C validator |