ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop GIF version

Theorem prop 7670
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7666 . . . 4 P ⊆ (𝒫 Q × 𝒫 Q)
21sseli 3220 . . 3 (𝐴P𝐴 ∈ (𝒫 Q × 𝒫 Q))
3 1st2nd2 6327 . . 3 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
42, 3syl 14 . 2 (𝐴P𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5 eleq1 2292 . . 3 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴P ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P))
65biimpcd 159 . 2 (𝐴P → (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P))
74, 6mpd 13 1 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  𝒫 cpw 3649  cop 3669   × cxp 4717  cfv 5318  1st c1st 6290  2nd c2nd 6291  Qcnq 7475  Pcnp 7486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6292  df-2nd 6293  df-inp 7661
This theorem is referenced by:  elnp1st2nd  7671  0npr  7678  genpdf  7703  genipv  7704  genpelvl  7707  genpelvu  7708  genpml  7712  genpmu  7713  genprndl  7716  genprndu  7717  genpdisj  7718  genpassl  7719  genpassu  7720  addnqprl  7724  addnqpru  7725  addlocprlemeqgt  7727  addlocprlemgt  7729  addlocprlem  7730  addlocpr  7731  nqprl  7746  nqpru  7747  addnqprlemfl  7754  addnqprlemfu  7755  mulnqprl  7763  mulnqpru  7764  mullocprlem  7765  mullocpr  7766  mulnqprlemfl  7770  mulnqprlemfu  7771  addcomprg  7773  mulcomprg  7775  distrlem1prl  7777  distrlem1pru  7778  distrlem4prl  7779  distrlem4pru  7780  ltprordil  7784  1idprl  7785  1idpru  7786  ltpopr  7790  ltsopr  7791  ltaddpr  7792  ltexprlemm  7795  ltexprlemopl  7796  ltexprlemlol  7797  ltexprlemopu  7798  ltexprlemupu  7799  ltexprlemdisj  7801  ltexprlemloc  7802  ltexprlemfl  7804  ltexprlemrl  7805  ltexprlemfu  7806  ltexprlemru  7807  addcanprleml  7809  addcanprlemu  7810  prplnqu  7815  recexprlemm  7819  recexprlemdisj  7825  recexprlemloc  7826  recexprlem1ssl  7828  recexprlem1ssu  7829  recexprlemss1l  7830  recexprlemss1u  7831  aptiprleml  7834  aptiprlemu  7835  archpr  7838  cauappcvgprlemladdru  7851  cauappcvgprlemladdrl  7852  archrecpr  7859  caucvgprlemladdrl  7873  caucvgprprlemml  7889  caucvgprprlemmu  7890  caucvgprprlemopl  7892  suplocexprlemml  7911  suplocexprlemrl  7912  suplocexprlemmu  7913  suplocexprlemdisj  7915  suplocexprlemloc  7916  suplocexprlemex  7917  suplocexprlemub  7918
  Copyright terms: Public domain W3C validator