ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnp1st2nd GIF version

Theorem elnp1st2nd 7438
Description: Membership in positive reals, using 1st and 2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
Assertion
Ref Expression
elnp1st2nd (𝐴P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
Distinct variable group:   𝑟,𝑞,𝐴

Proof of Theorem elnp1st2nd
StepHypRef Expression
1 npsspw 7433 . . . . 5 P ⊆ (𝒫 Q × 𝒫 Q)
21sseli 3143 . . . 4 (𝐴P𝐴 ∈ (𝒫 Q × 𝒫 Q))
3 prop 7437 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
4 elinp 7436 . . . . . . 7 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ↔ ((((1st𝐴) ⊆ Q ∧ (2nd𝐴) ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
53, 4sylib 121 . . . . . 6 (𝐴P → ((((1st𝐴) ⊆ Q ∧ (2nd𝐴) ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
65simpld 111 . . . . 5 (𝐴P → (((1st𝐴) ⊆ Q ∧ (2nd𝐴) ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))))
76simprd 113 . . . 4 (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴)))
82, 7jca 304 . . 3 (𝐴P → (𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))))
95simprd 113 . . 3 (𝐴P → ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴)))))
108, 9jca 304 . 2 (𝐴P → ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
11 1st2nd2 6154 . . . 4 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
1211ad2antrr 485 . . 3 (((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
13 xp1st 6144 . . . . . . . 8 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (1st𝐴) ∈ 𝒫 Q)
1413elpwid 3577 . . . . . . 7 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (1st𝐴) ⊆ Q)
15 xp2nd 6145 . . . . . . . 8 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (2nd𝐴) ∈ 𝒫 Q)
1615elpwid 3577 . . . . . . 7 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → (2nd𝐴) ⊆ Q)
1714, 16jca 304 . . . . . 6 (𝐴 ∈ (𝒫 Q × 𝒫 Q) → ((1st𝐴) ⊆ Q ∧ (2nd𝐴) ⊆ Q))
1817anim1i 338 . . . . 5 ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) → (((1st𝐴) ⊆ Q ∧ (2nd𝐴) ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))))
1918anim1i 338 . . . 4 (((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))) → ((((1st𝐴) ⊆ Q ∧ (2nd𝐴) ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
2019, 4sylibr 133 . . 3 (((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2112, 20eqeltrd 2247 . 2 (((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))) → 𝐴P)
2210, 21impbii 125 1 (𝐴P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121  𝒫 cpw 3566  cop 3586   class class class wbr 3989   × cxp 4609  cfv 5198  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-qs 6519  df-ni 7266  df-nqqs 7310  df-inp 7428
This theorem is referenced by:  addclpr  7499  mulclpr  7534  ltexprlempr  7570  recexprlempr  7594  cauappcvgprlemcl  7615  caucvgprlemcl  7638  caucvgprprlemcl  7666
  Copyright terms: Public domain W3C validator