ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucunielr GIF version

Theorem sucunielr 4557
Description: Successor and union. The converse (where 𝐵 is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4578. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
sucunielr (suc 𝐴𝐵𝐴 𝐵)

Proof of Theorem sucunielr
StepHypRef Expression
1 elex 2782 . . . 4 (suc 𝐴𝐵 → suc 𝐴 ∈ V)
2 sucexb 4544 . . . 4 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylibr 134 . . 3 (suc 𝐴𝐵𝐴 ∈ V)
4 sucidg 4462 . . 3 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
53, 4syl 14 . 2 (suc 𝐴𝐵𝐴 ∈ suc 𝐴)
6 elunii 3854 . 2 ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴𝐵) → 𝐴 𝐵)
75, 6mpancom 422 1 (suc 𝐴𝐵𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  Vcvv 2771   cuni 3849  suc csuc 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-suc 4417
This theorem is referenced by:  nnsucuniel  6580
  Copyright terms: Public domain W3C validator