Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucunielr | GIF version |
Description: Successor and union. The converse (where 𝐵 is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4515. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
sucunielr | ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . . 4 ⊢ (suc 𝐴 ∈ 𝐵 → suc 𝐴 ∈ V) | |
2 | sucexb 4481 | . . . 4 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | sylibr 133 | . . 3 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
4 | sucidg 4401 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐴) |
6 | elunii 3801 | . 2 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝐵) → 𝐴 ∈ ∪ 𝐵) | |
7 | 5, 6 | mpancom 420 | 1 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 ∪ cuni 3796 suc csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-suc 4356 |
This theorem is referenced by: nnsucuniel 6474 |
Copyright terms: Public domain | W3C validator |