ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucunielr GIF version

Theorem sucunielr 4558
Description: Successor and union. The converse (where 𝐵 is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4579. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
sucunielr (suc 𝐴𝐵𝐴 𝐵)

Proof of Theorem sucunielr
StepHypRef Expression
1 elex 2783 . . . 4 (suc 𝐴𝐵 → suc 𝐴 ∈ V)
2 sucexb 4545 . . . 4 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylibr 134 . . 3 (suc 𝐴𝐵𝐴 ∈ V)
4 sucidg 4463 . . 3 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
53, 4syl 14 . 2 (suc 𝐴𝐵𝐴 ∈ suc 𝐴)
6 elunii 3855 . 2 ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴𝐵) → 𝐴 𝐵)
75, 6mpancom 422 1 (suc 𝐴𝐵𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  Vcvv 2772   cuni 3850  suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-suc 4418
This theorem is referenced by:  nnsucuniel  6581
  Copyright terms: Public domain W3C validator