| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucunielr | GIF version | ||
| Description: Successor and union. The converse (where 𝐵 is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4597. (Contributed by Jim Kingdon, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| sucunielr | ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . . . 4 ⊢ (suc 𝐴 ∈ 𝐵 → suc 𝐴 ∈ V) | |
| 2 | sucexb 4563 | . . . 4 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | sylibr 134 | . . 3 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| 4 | sucidg 4481 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐴) |
| 6 | elunii 3869 | . 2 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝐵) → 𝐴 ∈ ∪ 𝐵) | |
| 7 | 5, 6 | mpancom 422 | 1 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 Vcvv 2776 ∪ cuni 3864 suc csuc 4430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-suc 4436 |
| This theorem is referenced by: nnsucuniel 6604 |
| Copyright terms: Public domain | W3C validator |