| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucunielr | GIF version | ||
| Description: Successor and union. The converse (where 𝐵 is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4567. (Contributed by Jim Kingdon, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| sucunielr | ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . . . 4 ⊢ (suc 𝐴 ∈ 𝐵 → suc 𝐴 ∈ V) | |
| 2 | sucexb 4533 | . . . 4 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | sylibr 134 | . . 3 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| 4 | sucidg 4451 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐴) |
| 6 | elunii 3844 | . 2 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝐵) → 𝐴 ∈ ∪ 𝐵) | |
| 7 | 5, 6 | mpancom 422 | 1 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 ∪ cuni 3839 suc csuc 4400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-suc 4406 |
| This theorem is referenced by: nnsucuniel 6553 |
| Copyright terms: Public domain | W3C validator |