Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucunielr | GIF version |
Description: Successor and union. The converse (where 𝐵 is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4508. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
sucunielr | ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . . 4 ⊢ (suc 𝐴 ∈ 𝐵 → suc 𝐴 ∈ V) | |
2 | sucexb 4474 | . . . 4 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | sylibr 133 | . . 3 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
4 | sucidg 4394 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐴) |
6 | elunii 3794 | . 2 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝐵) → 𝐴 ∈ ∪ 𝐵) | |
7 | 5, 6 | mpancom 419 | 1 ⊢ (suc 𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 ∪ cuni 3789 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-suc 4349 |
This theorem is referenced by: nnsucuniel 6463 |
Copyright terms: Public domain | W3C validator |