ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabg GIF version

Theorem brabg 4271
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabg.2 (𝑦 = 𝐵 → (𝜓𝜒))
brabg.5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabg ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 opelopabg.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
31, 2sylan9bb 462 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒))
4 brabg.5 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
53, 4brabga 4266 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148   class class class wbr 4005  {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067
This theorem is referenced by:  brab  4274  opbrop  4707  ideqg  4780  opelcnvg  4809  bren  6749  brdomg  6750  enq0breq  7437  ltresr  7840  ltxrlt  8025  apreap  8546  apreim  8562  shftfibg  10831  shftfib  10834  2shfti  10842
  Copyright terms: Public domain W3C validator