| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brabg | GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| opelopabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopabg.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| brabg.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brabg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | opelopabg.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | sylan9bb 462 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒)) |
| 4 | brabg.5 | . 2 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 5 | 3, 4 | brabga 4310 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 {copab 4104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 |
| This theorem is referenced by: brab 4319 opbrop 4754 ideqg 4829 opelcnvg 4858 breng 6834 bren 6835 brdom2g 6836 brdomg 6837 enq0breq 7549 ltresr 7952 ltxrlt 8138 apreap 8660 apreim 8676 shftfibg 11131 shftfib 11134 2shfti 11142 |
| Copyright terms: Public domain | W3C validator |