ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabfi GIF version

Theorem opabfi 7042
Description: Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
Hypotheses
Ref Expression
opabfi.s 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
opabfi.a (𝜑𝐴 ∈ Fin)
opabfi.b (𝜑𝐵 ∈ Fin)
opabfi.dc (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
Assertion
Ref Expression
opabfi (𝜑𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem opabfi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opabfi.a . . 3 (𝜑𝐴 ∈ Fin)
2 opabfi.b . . 3 (𝜑𝐵 ∈ Fin)
3 xpfi 7036 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin)
41, 2, 3syl2anc 411 . 2 (𝜑 → (𝐴 × 𝐵) ∈ Fin)
5 opabfi.s . . . 4 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
6 opabssxp 4753 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵)
75, 6eqsstri 3226 . . 3 𝑆 ⊆ (𝐴 × 𝐵)
87a1i 9 . 2 (𝜑𝑆 ⊆ (𝐴 × 𝐵))
9 xp2nd 6259 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
109adantl 277 . . . . 5 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (2nd𝑧) ∈ 𝐵)
11 xp1st 6258 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
1211adantl 277 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (1st𝑧) ∈ 𝐴)
13 opabfi.dc . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
1413adantr 276 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
15 nfcv 2349 . . . . . . . 8 𝑥𝐵
16 nfsbc1v 3018 . . . . . . . . 9 𝑥[(1st𝑧) / 𝑥]𝜓
1716nfdc 1683 . . . . . . . 8 𝑥DECID [(1st𝑧) / 𝑥]𝜓
1815, 17nfralw 2544 . . . . . . 7 𝑥𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓
19 sbceq1a 3009 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝜓[(1st𝑧) / 𝑥]𝜓))
2019dcbid 840 . . . . . . . 8 (𝑥 = (1st𝑧) → (DECID 𝜓DECID [(1st𝑧) / 𝑥]𝜓))
2120ralbidv 2507 . . . . . . 7 (𝑥 = (1st𝑧) → (∀𝑦𝐵 DECID 𝜓 ↔ ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓))
2218, 21rspc 2872 . . . . . 6 ((1st𝑧) ∈ 𝐴 → (∀𝑥𝐴𝑦𝐵 DECID 𝜓 → ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓))
2312, 14, 22sylc 62 . . . . 5 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓)
24 nfsbc1v 3018 . . . . . . 7 𝑦[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓
2524nfdc 1683 . . . . . 6 𝑦DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓
26 sbceq1a 3009 . . . . . . 7 (𝑦 = (2nd𝑧) → ([(1st𝑧) / 𝑥]𝜓[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2726dcbid 840 . . . . . 6 (𝑦 = (2nd𝑧) → (DECID [(1st𝑧) / 𝑥]𝜓DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2825, 27rspc 2872 . . . . 5 ((2nd𝑧) ∈ 𝐵 → (∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2910, 23, 28sylc 62 . . . 4 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)
30 nfv 1552 . . . . . . . . . 10 𝑥((1st𝑧) ∈ 𝐴𝑦𝐵)
3130, 16nfan 1589 . . . . . . . . 9 𝑥(((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓)
32 nfv 1552 . . . . . . . . . 10 𝑦((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)
3332, 24nfan 1589 . . . . . . . . 9 𝑦(((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)
34 eleq1 2269 . . . . . . . . . . 11 (𝑥 = (1st𝑧) → (𝑥𝐴 ↔ (1st𝑧) ∈ 𝐴))
3534anbi1d 465 . . . . . . . . . 10 (𝑥 = (1st𝑧) → ((𝑥𝐴𝑦𝐵) ↔ ((1st𝑧) ∈ 𝐴𝑦𝐵)))
3635, 19anbi12d 473 . . . . . . . . 9 (𝑥 = (1st𝑧) → (((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ (((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓)))
37 eleq1 2269 . . . . . . . . . . 11 (𝑦 = (2nd𝑧) → (𝑦𝐵 ↔ (2nd𝑧) ∈ 𝐵))
3837anbi2d 464 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (((1st𝑧) ∈ 𝐴𝑦𝐵) ↔ ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)))
3938, 26anbi12d 473 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ((((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓) ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4031, 33, 36, 39opelopabgf 4320 . . . . . . . 8 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4111, 9, 40syl2anc 411 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
42 1st2nd2 6268 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
435a1i 9 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
4442, 43eleq12d 2277 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝑧𝑆 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
45 ibar 301 . . . . . . . 8 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → ([(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓 ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4611, 9, 45syl2anc 411 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → ([(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓 ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4741, 44, 463bitr4d 220 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (𝑧𝑆[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
4847dcbid 840 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (DECID 𝑧𝑆DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
4948adantl 277 . . . 4 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (DECID 𝑧𝑆DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
5029, 49mpbird 167 . . 3 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → DECID 𝑧𝑆)
5150ralrimiva 2580 . 2 (𝜑 → ∀𝑧 ∈ (𝐴 × 𝐵)DECID 𝑧𝑆)
52 ssfidc 7041 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ 𝑆 ⊆ (𝐴 × 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)DECID 𝑧𝑆) → 𝑆 ∈ Fin)
534, 8, 51, 52syl3anc 1250 1 (𝜑𝑆 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  [wsbc 2999  wss 3167  cop 3637  {copab 4108   × cxp 4677  cfv 5276  1st c1st 6231  2nd c2nd 6232  Fincfn 6834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-1st 6233  df-2nd 6234  df-1o 6509  df-er 6627  df-en 6835  df-fin 6837
This theorem is referenced by:  lgsquadlemsfi  15596  lgsquadlem3  15600
  Copyright terms: Public domain W3C validator