ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabfi GIF version

Theorem opabfi 7108
Description: Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
Hypotheses
Ref Expression
opabfi.s 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
opabfi.a (𝜑𝐴 ∈ Fin)
opabfi.b (𝜑𝐵 ∈ Fin)
opabfi.dc (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
Assertion
Ref Expression
opabfi (𝜑𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem opabfi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opabfi.a . . 3 (𝜑𝐴 ∈ Fin)
2 opabfi.b . . 3 (𝜑𝐵 ∈ Fin)
3 xpfi 7102 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin)
41, 2, 3syl2anc 411 . 2 (𝜑 → (𝐴 × 𝐵) ∈ Fin)
5 opabfi.s . . . 4 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
6 opabssxp 4793 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵)
75, 6eqsstri 3256 . . 3 𝑆 ⊆ (𝐴 × 𝐵)
87a1i 9 . 2 (𝜑𝑆 ⊆ (𝐴 × 𝐵))
9 xp2nd 6318 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
109adantl 277 . . . . 5 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (2nd𝑧) ∈ 𝐵)
11 xp1st 6317 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
1211adantl 277 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (1st𝑧) ∈ 𝐴)
13 opabfi.dc . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
1413adantr 276 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
15 nfcv 2372 . . . . . . . 8 𝑥𝐵
16 nfsbc1v 3047 . . . . . . . . 9 𝑥[(1st𝑧) / 𝑥]𝜓
1716nfdc 1705 . . . . . . . 8 𝑥DECID [(1st𝑧) / 𝑥]𝜓
1815, 17nfralw 2567 . . . . . . 7 𝑥𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓
19 sbceq1a 3038 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝜓[(1st𝑧) / 𝑥]𝜓))
2019dcbid 843 . . . . . . . 8 (𝑥 = (1st𝑧) → (DECID 𝜓DECID [(1st𝑧) / 𝑥]𝜓))
2120ralbidv 2530 . . . . . . 7 (𝑥 = (1st𝑧) → (∀𝑦𝐵 DECID 𝜓 ↔ ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓))
2218, 21rspc 2901 . . . . . 6 ((1st𝑧) ∈ 𝐴 → (∀𝑥𝐴𝑦𝐵 DECID 𝜓 → ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓))
2312, 14, 22sylc 62 . . . . 5 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓)
24 nfsbc1v 3047 . . . . . . 7 𝑦[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓
2524nfdc 1705 . . . . . 6 𝑦DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓
26 sbceq1a 3038 . . . . . . 7 (𝑦 = (2nd𝑧) → ([(1st𝑧) / 𝑥]𝜓[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2726dcbid 843 . . . . . 6 (𝑦 = (2nd𝑧) → (DECID [(1st𝑧) / 𝑥]𝜓DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2825, 27rspc 2901 . . . . 5 ((2nd𝑧) ∈ 𝐵 → (∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2910, 23, 28sylc 62 . . . 4 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)
30 nfv 1574 . . . . . . . . . 10 𝑥((1st𝑧) ∈ 𝐴𝑦𝐵)
3130, 16nfan 1611 . . . . . . . . 9 𝑥(((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓)
32 nfv 1574 . . . . . . . . . 10 𝑦((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)
3332, 24nfan 1611 . . . . . . . . 9 𝑦(((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)
34 eleq1 2292 . . . . . . . . . . 11 (𝑥 = (1st𝑧) → (𝑥𝐴 ↔ (1st𝑧) ∈ 𝐴))
3534anbi1d 465 . . . . . . . . . 10 (𝑥 = (1st𝑧) → ((𝑥𝐴𝑦𝐵) ↔ ((1st𝑧) ∈ 𝐴𝑦𝐵)))
3635, 19anbi12d 473 . . . . . . . . 9 (𝑥 = (1st𝑧) → (((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ (((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓)))
37 eleq1 2292 . . . . . . . . . . 11 (𝑦 = (2nd𝑧) → (𝑦𝐵 ↔ (2nd𝑧) ∈ 𝐵))
3837anbi2d 464 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (((1st𝑧) ∈ 𝐴𝑦𝐵) ↔ ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)))
3938, 26anbi12d 473 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ((((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓) ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4031, 33, 36, 39opelopabgf 4358 . . . . . . . 8 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4111, 9, 40syl2anc 411 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
42 1st2nd2 6327 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
435a1i 9 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
4442, 43eleq12d 2300 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝑧𝑆 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
45 ibar 301 . . . . . . . 8 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → ([(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓 ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4611, 9, 45syl2anc 411 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → ([(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓 ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4741, 44, 463bitr4d 220 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (𝑧𝑆[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
4847dcbid 843 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (DECID 𝑧𝑆DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
4948adantl 277 . . . 4 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (DECID 𝑧𝑆DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
5029, 49mpbird 167 . . 3 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → DECID 𝑧𝑆)
5150ralrimiva 2603 . 2 (𝜑 → ∀𝑧 ∈ (𝐴 × 𝐵)DECID 𝑧𝑆)
52 ssfidc 7107 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ 𝑆 ⊆ (𝐴 × 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)DECID 𝑧𝑆) → 𝑆 ∈ Fin)
534, 8, 51, 52syl3anc 1271 1 (𝜑𝑆 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  [wsbc 3028  wss 3197  cop 3669  {copab 4144   × cxp 4717  cfv 5318  1st c1st 6290  2nd c2nd 6291  Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6292  df-2nd 6293  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898
This theorem is referenced by:  lgsquadlemsfi  15762  lgsquadlem3  15766
  Copyright terms: Public domain W3C validator