ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabfi GIF version

Theorem opabfi 6999
Description: Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
Hypotheses
Ref Expression
opabfi.s 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
opabfi.a (𝜑𝐴 ∈ Fin)
opabfi.b (𝜑𝐵 ∈ Fin)
opabfi.dc (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
Assertion
Ref Expression
opabfi (𝜑𝑆 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem opabfi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opabfi.a . . 3 (𝜑𝐴 ∈ Fin)
2 opabfi.b . . 3 (𝜑𝐵 ∈ Fin)
3 xpfi 6993 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin)
41, 2, 3syl2anc 411 . 2 (𝜑 → (𝐴 × 𝐵) ∈ Fin)
5 opabfi.s . . . 4 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
6 opabssxp 4737 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵)
75, 6eqsstri 3215 . . 3 𝑆 ⊆ (𝐴 × 𝐵)
87a1i 9 . 2 (𝜑𝑆 ⊆ (𝐴 × 𝐵))
9 xp2nd 6224 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
109adantl 277 . . . . 5 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (2nd𝑧) ∈ 𝐵)
11 xp1st 6223 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
1211adantl 277 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (1st𝑧) ∈ 𝐴)
13 opabfi.dc . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
1413adantr 276 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)
15 nfcv 2339 . . . . . . . 8 𝑥𝐵
16 nfsbc1v 3008 . . . . . . . . 9 𝑥[(1st𝑧) / 𝑥]𝜓
1716nfdc 1673 . . . . . . . 8 𝑥DECID [(1st𝑧) / 𝑥]𝜓
1815, 17nfralw 2534 . . . . . . 7 𝑥𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓
19 sbceq1a 2999 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝜓[(1st𝑧) / 𝑥]𝜓))
2019dcbid 839 . . . . . . . 8 (𝑥 = (1st𝑧) → (DECID 𝜓DECID [(1st𝑧) / 𝑥]𝜓))
2120ralbidv 2497 . . . . . . 7 (𝑥 = (1st𝑧) → (∀𝑦𝐵 DECID 𝜓 ↔ ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓))
2218, 21rspc 2862 . . . . . 6 ((1st𝑧) ∈ 𝐴 → (∀𝑥𝐴𝑦𝐵 DECID 𝜓 → ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓))
2312, 14, 22sylc 62 . . . . 5 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → ∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓)
24 nfsbc1v 3008 . . . . . . 7 𝑦[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓
2524nfdc 1673 . . . . . 6 𝑦DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓
26 sbceq1a 2999 . . . . . . 7 (𝑦 = (2nd𝑧) → ([(1st𝑧) / 𝑥]𝜓[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2726dcbid 839 . . . . . 6 (𝑦 = (2nd𝑧) → (DECID [(1st𝑧) / 𝑥]𝜓DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2825, 27rspc 2862 . . . . 5 ((2nd𝑧) ∈ 𝐵 → (∀𝑦𝐵 DECID [(1st𝑧) / 𝑥]𝜓DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
2910, 23, 28sylc 62 . . . 4 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)
30 nfv 1542 . . . . . . . . . 10 𝑥((1st𝑧) ∈ 𝐴𝑦𝐵)
3130, 16nfan 1579 . . . . . . . . 9 𝑥(((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓)
32 nfv 1542 . . . . . . . . . 10 𝑦((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)
3332, 24nfan 1579 . . . . . . . . 9 𝑦(((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)
34 eleq1 2259 . . . . . . . . . . 11 (𝑥 = (1st𝑧) → (𝑥𝐴 ↔ (1st𝑧) ∈ 𝐴))
3534anbi1d 465 . . . . . . . . . 10 (𝑥 = (1st𝑧) → ((𝑥𝐴𝑦𝐵) ↔ ((1st𝑧) ∈ 𝐴𝑦𝐵)))
3635, 19anbi12d 473 . . . . . . . . 9 (𝑥 = (1st𝑧) → (((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ (((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓)))
37 eleq1 2259 . . . . . . . . . . 11 (𝑦 = (2nd𝑧) → (𝑦𝐵 ↔ (2nd𝑧) ∈ 𝐵))
3837anbi2d 464 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (((1st𝑧) ∈ 𝐴𝑦𝐵) ↔ ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)))
3938, 26anbi12d 473 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ((((1st𝑧) ∈ 𝐴𝑦𝐵) ∧ [(1st𝑧) / 𝑥]𝜓) ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4031, 33, 36, 39opelopabgf 4304 . . . . . . . 8 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4111, 9, 40syl2anc 411 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
42 1st2nd2 6233 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
435a1i 9 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
4442, 43eleq12d 2267 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝑧𝑆 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}))
45 ibar 301 . . . . . . . 8 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → ([(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓 ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4611, 9, 45syl2anc 411 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → ([(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓 ↔ (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) ∧ [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓)))
4741, 44, 463bitr4d 220 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (𝑧𝑆[(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
4847dcbid 839 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (DECID 𝑧𝑆DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
4948adantl 277 . . . 4 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (DECID 𝑧𝑆DECID [(2nd𝑧) / 𝑦][(1st𝑧) / 𝑥]𝜓))
5029, 49mpbird 167 . . 3 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → DECID 𝑧𝑆)
5150ralrimiva 2570 . 2 (𝜑 → ∀𝑧 ∈ (𝐴 × 𝐵)DECID 𝑧𝑆)
52 ssfidc 6998 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ 𝑆 ⊆ (𝐴 × 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)DECID 𝑧𝑆) → 𝑆 ∈ Fin)
534, 8, 51, 52syl3anc 1249 1 (𝜑𝑆 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  [wsbc 2989  wss 3157  cop 3625  {copab 4093   × cxp 4661  cfv 5258  1st c1st 6196  2nd c2nd 6197  Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  lgsquadlemsfi  15316  lgsquadlem3  15320
  Copyright terms: Public domain W3C validator