ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brelrn GIF version

Theorem brelrn 4875
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
Hypotheses
Ref Expression
brelrn.1 𝐴 ∈ V
brelrn.2 𝐵 ∈ V
Assertion
Ref Expression
brelrn (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)

Proof of Theorem brelrn
StepHypRef Expression
1 brelrn.1 . 2 𝐴 ∈ V
2 brelrn.2 . 2 𝐵 ∈ V
3 brelrng 4873 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
41, 2, 3mp3an12 1338 1 (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  Vcvv 2752   class class class wbr 4018  ran crn 4642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-cnv 4649  df-dm 4651  df-rn 4652
This theorem is referenced by:  opelrn  4876  dfco2a  5144  cores  5147  dffun9  5261  funcnv  5293  rntpos  6277  tfrexlem  6354
  Copyright terms: Public domain W3C validator