![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brelrn | GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
brelrn.1 | ⊢ 𝐴 ∈ V |
brelrn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brelrn | ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brelrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brelrn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brelrng 4679 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | |
4 | 1, 2, 3 | mp3an12 1264 | 1 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1439 Vcvv 2620 class class class wbr 3851 ran crn 4453 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-br 3852 df-opab 3906 df-cnv 4460 df-dm 4462 df-rn 4463 |
This theorem is referenced by: opelrn 4682 dfco2a 4944 cores 4947 dffun9 5057 funcnv 5088 rntpos 6036 tfrexlem 6113 |
Copyright terms: Public domain | W3C validator |