![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brelrn | GIF version |
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
brelrn.1 | ⊢ 𝐴 ∈ V |
brelrn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brelrn | ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brelrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brelrn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brelrng 4698 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | |
4 | 1, 2, 3 | mp3an12 1270 | 1 ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1445 Vcvv 2633 class class class wbr 3867 ran crn 4468 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-cnv 4475 df-dm 4477 df-rn 4478 |
This theorem is referenced by: opelrn 4701 dfco2a 4965 cores 4968 dffun9 5078 funcnv 5109 rntpos 6060 tfrexlem 6137 |
Copyright terms: Public domain | W3C validator |