ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iordsmo GIF version

Theorem iordsmo 6441
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1 Ord 𝐴
Assertion
Ref Expression
iordsmo Smo ( I ↾ 𝐴)

Proof of Theorem iordsmo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 5440 . . 3 ( I ↾ 𝐴) Fn 𝐴
2 rnresi 5084 . . . 4 ran ( I ↾ 𝐴) = 𝐴
3 iordsmo.1 . . . . 5 Ord 𝐴
4 ordsson 4583 . . . . 5 (Ord 𝐴𝐴 ⊆ On)
53, 4ax-mp 5 . . . 4 𝐴 ⊆ On
62, 5eqsstri 3256 . . 3 ran ( I ↾ 𝐴) ⊆ On
7 df-f 5321 . . 3 (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On))
81, 6, 7mpbir2an 948 . 2 ( I ↾ 𝐴):𝐴⟶On
9 fvresi 5831 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
109adantr 276 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
11 fvresi 5831 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1211adantl 277 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1310, 12eleq12d 2300 . . 3 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑦))
1413biimprd 158 . 2 ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦)))
15 dmresi 5059 . 2 dom ( I ↾ 𝐴) = 𝐴
168, 3, 14, 15issmo 6432 1 Smo ( I ↾ 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  wss 3197   I cid 4378  Ord word 4452  Oncon0 4453  ran crn 4719  cres 4720   Fn wfn 5312  wf 5313  cfv 5317  Smo wsmo 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-smo 6430
This theorem is referenced by:  smo0  6442
  Copyright terms: Public domain W3C validator