Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iordsmo | GIF version |
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
iordsmo.1 | ⊢ Ord 𝐴 |
Ref | Expression |
---|---|
iordsmo | ⊢ Smo ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 5305 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | rnresi 4961 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
4 | ordsson 4469 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On |
6 | 2, 5 | eqsstri 3174 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On |
7 | df-f 5192 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
8 | 1, 6, 7 | mpbir2an 932 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On |
9 | fvresi 5678 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
10 | 9 | adantr 274 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
11 | fvresi 5678 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
12 | 11 | adantl 275 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
13 | 10, 12 | eleq12d 2237 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) |
14 | 13 | biimprd 157 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) |
15 | dmresi 4939 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
16 | 8, 3, 14, 15 | issmo 6256 | 1 ⊢ Smo ( I ↾ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 I cid 4266 Ord word 4340 Oncon0 4341 ran crn 4605 ↾ cres 4606 Fn wfn 5183 ⟶wf 5184 ‘cfv 5188 Smo wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-smo 6254 |
This theorem is referenced by: smo0 6266 |
Copyright terms: Public domain | W3C validator |