ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iordsmo GIF version

Theorem iordsmo 6350
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1 Ord 𝐴
Assertion
Ref Expression
iordsmo Smo ( I ↾ 𝐴)

Proof of Theorem iordsmo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 5371 . . 3 ( I ↾ 𝐴) Fn 𝐴
2 rnresi 5022 . . . 4 ran ( I ↾ 𝐴) = 𝐴
3 iordsmo.1 . . . . 5 Ord 𝐴
4 ordsson 4524 . . . . 5 (Ord 𝐴𝐴 ⊆ On)
53, 4ax-mp 5 . . . 4 𝐴 ⊆ On
62, 5eqsstri 3211 . . 3 ran ( I ↾ 𝐴) ⊆ On
7 df-f 5258 . . 3 (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On))
81, 6, 7mpbir2an 944 . 2 ( I ↾ 𝐴):𝐴⟶On
9 fvresi 5751 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
109adantr 276 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
11 fvresi 5751 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1211adantl 277 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
1310, 12eleq12d 2264 . . 3 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥𝑦))
1413biimprd 158 . 2 ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦)))
15 dmresi 4997 . 2 dom ( I ↾ 𝐴) = 𝐴
168, 3, 14, 15issmo 6341 1 Smo ( I ↾ 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  wss 3153   I cid 4319  Ord word 4393  Oncon0 4394  ran crn 4660  cres 4661   Fn wfn 5249  wf 5250  cfv 5254  Smo wsmo 6338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-smo 6339
This theorem is referenced by:  smo0  6351
  Copyright terms: Public domain W3C validator