ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iordsmo GIF version

Theorem iordsmo 6300
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1 Ord 𝐴
Assertion
Ref Expression
iordsmo Smo ( I β†Ύ 𝐴)

Proof of Theorem iordsmo
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 5335 . . 3 ( I β†Ύ 𝐴) Fn 𝐴
2 rnresi 4987 . . . 4 ran ( I β†Ύ 𝐴) = 𝐴
3 iordsmo.1 . . . . 5 Ord 𝐴
4 ordsson 4493 . . . . 5 (Ord 𝐴 β†’ 𝐴 βŠ† On)
53, 4ax-mp 5 . . . 4 𝐴 βŠ† On
62, 5eqsstri 3189 . . 3 ran ( I β†Ύ 𝐴) βŠ† On
7 df-f 5222 . . 3 (( I β†Ύ 𝐴):𝐴⟢On ↔ (( I β†Ύ 𝐴) Fn 𝐴 ∧ ran ( I β†Ύ 𝐴) βŠ† On))
81, 6, 7mpbir2an 942 . 2 ( I β†Ύ 𝐴):𝐴⟢On
9 fvresi 5711 . . . . 5 (π‘₯ ∈ 𝐴 β†’ (( I β†Ύ 𝐴)β€˜π‘₯) = π‘₯)
109adantr 276 . . . 4 ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (( I β†Ύ 𝐴)β€˜π‘₯) = π‘₯)
11 fvresi 5711 . . . . 5 (𝑦 ∈ 𝐴 β†’ (( I β†Ύ 𝐴)β€˜π‘¦) = 𝑦)
1211adantl 277 . . . 4 ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (( I β†Ύ 𝐴)β€˜π‘¦) = 𝑦)
1310, 12eleq12d 2248 . . 3 ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ ((( I β†Ύ 𝐴)β€˜π‘₯) ∈ (( I β†Ύ 𝐴)β€˜π‘¦) ↔ π‘₯ ∈ 𝑦))
1413biimprd 158 . 2 ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ ∈ 𝑦 β†’ (( I β†Ύ 𝐴)β€˜π‘₯) ∈ (( I β†Ύ 𝐴)β€˜π‘¦)))
15 dmresi 4964 . 2 dom ( I β†Ύ 𝐴) = 𝐴
168, 3, 14, 15issmo 6291 1 Smo ( I β†Ύ 𝐴)
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   = wceq 1353   ∈ wcel 2148   βŠ† wss 3131   I cid 4290  Ord word 4364  Oncon0 4365  ran crn 4629   β†Ύ cres 4630   Fn wfn 5213  βŸΆwf 5214  β€˜cfv 5218  Smo wsmo 6288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-smo 6289
This theorem is referenced by:  smo0  6301
  Copyright terms: Public domain W3C validator