| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iordsmo | GIF version | ||
| Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| iordsmo.1 | ⊢ Ord 𝐴 |
| Ref | Expression |
|---|---|
| iordsmo | ⊢ Smo ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 5440 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | rnresi 5084 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
| 4 | ordsson 4583 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On |
| 6 | 2, 5 | eqsstri 3256 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On |
| 7 | df-f 5321 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
| 8 | 1, 6, 7 | mpbir2an 948 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On |
| 9 | fvresi 5831 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
| 11 | fvresi 5831 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
| 13 | 10, 12 | eleq12d 2300 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) |
| 14 | 13 | biimprd 158 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) |
| 15 | dmresi 5059 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
| 16 | 8, 3, 14, 15 | issmo 6432 | 1 ⊢ Smo ( I ↾ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 I cid 4378 Ord word 4452 Oncon0 4453 ran crn 4719 ↾ cres 4720 Fn wfn 5312 ⟶wf 5313 ‘cfv 5317 Smo wsmo 6429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-smo 6430 |
| This theorem is referenced by: smo0 6442 |
| Copyright terms: Public domain | W3C validator |