| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iordsmo | GIF version | ||
| Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| iordsmo.1 | ⊢ Ord 𝐴 | 
| Ref | Expression | 
|---|---|
| iordsmo | ⊢ Smo ( I ↾ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnresi 5375 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | rnresi 5026 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
| 4 | ordsson 4528 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On | 
| 6 | 2, 5 | eqsstri 3215 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On | 
| 7 | df-f 5262 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
| 8 | 1, 6, 7 | mpbir2an 944 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On | 
| 9 | fvresi 5755 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) | 
| 11 | fvresi 5755 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) | 
| 13 | 10, 12 | eleq12d 2267 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) | 
| 14 | 13 | biimprd 158 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) | 
| 15 | dmresi 5001 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
| 16 | 8, 3, 14, 15 | issmo 6346 | 1 ⊢ Smo ( I ↾ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 I cid 4323 Ord word 4397 Oncon0 4398 ran crn 4664 ↾ cres 4665 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 Smo wsmo 6343 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-smo 6344 | 
| This theorem is referenced by: smo0 6356 | 
| Copyright terms: Public domain | W3C validator |