| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iordsmo | GIF version | ||
| Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| iordsmo.1 | ⊢ Ord 𝐴 |
| Ref | Expression |
|---|---|
| iordsmo | ⊢ Smo ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 5403 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | rnresi 5048 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
| 4 | ordsson 4548 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On |
| 6 | 2, 5 | eqsstri 3229 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On |
| 7 | df-f 5284 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
| 8 | 1, 6, 7 | mpbir2an 945 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On |
| 9 | fvresi 5790 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
| 11 | fvresi 5790 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
| 13 | 10, 12 | eleq12d 2277 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) |
| 14 | 13 | biimprd 158 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) |
| 15 | dmresi 5023 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
| 16 | 8, 3, 14, 15 | issmo 6387 | 1 ⊢ Smo ( I ↾ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 I cid 4343 Ord word 4417 Oncon0 4418 ran crn 4684 ↾ cres 4685 Fn wfn 5275 ⟶wf 5276 ‘cfv 5280 Smo wsmo 6384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-smo 6385 |
| This theorem is referenced by: smo0 6397 |
| Copyright terms: Public domain | W3C validator |