Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iordsmo | GIF version |
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
iordsmo.1 | ⊢ Ord 𝐴 |
Ref | Expression |
---|---|
iordsmo | ⊢ Smo ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 5325 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
2 | rnresi 4978 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
4 | ordsson 4485 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On |
6 | 2, 5 | eqsstri 3185 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On |
7 | df-f 5212 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
8 | 1, 6, 7 | mpbir2an 942 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On |
9 | fvresi 5701 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
11 | fvresi 5701 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
13 | 10, 12 | eleq12d 2246 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) |
14 | 13 | biimprd 158 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) |
15 | dmresi 4955 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
16 | 8, 3, 14, 15 | issmo 6279 | 1 ⊢ Smo ( I ↾ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2146 ⊆ wss 3127 I cid 4282 Ord word 4356 Oncon0 4357 ran crn 4621 ↾ cres 4622 Fn wfn 5203 ⟶wf 5204 ‘cfv 5208 Smo wsmo 6276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-smo 6277 |
This theorem is referenced by: smo0 6289 |
Copyright terms: Public domain | W3C validator |