| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iordsmo | GIF version | ||
| Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| iordsmo.1 | ⊢ Ord 𝐴 |
| Ref | Expression |
|---|---|
| iordsmo | ⊢ Smo ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresi 5387 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 2 | rnresi 5036 | . . . 4 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
| 3 | iordsmo.1 | . . . . 5 ⊢ Ord 𝐴 | |
| 4 | ordsson 4538 | . . . . 5 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐴 ⊆ On |
| 6 | 2, 5 | eqsstri 3224 | . . 3 ⊢ ran ( I ↾ 𝐴) ⊆ On |
| 7 | df-f 5272 | . . 3 ⊢ (( I ↾ 𝐴):𝐴⟶On ↔ (( I ↾ 𝐴) Fn 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ On)) | |
| 8 | 1, 6, 7 | mpbir2an 944 | . 2 ⊢ ( I ↾ 𝐴):𝐴⟶On |
| 9 | fvresi 5767 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑥) = 𝑥) |
| 11 | fvresi 5767 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (( I ↾ 𝐴)‘𝑦) = 𝑦) |
| 13 | 10, 12 | eleq12d 2275 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦) ↔ 𝑥 ∈ 𝑦)) |
| 14 | 13 | biimprd 158 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 → (( I ↾ 𝐴)‘𝑥) ∈ (( I ↾ 𝐴)‘𝑦))) |
| 15 | dmresi 5011 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
| 16 | 8, 3, 14, 15 | issmo 6364 | 1 ⊢ Smo ( I ↾ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 I cid 4333 Ord word 4407 Oncon0 4408 ran crn 4674 ↾ cres 4675 Fn wfn 5263 ⟶wf 5264 ‘cfv 5268 Smo wsmo 6361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-smo 6362 |
| This theorem is referenced by: smo0 6374 |
| Copyright terms: Public domain | W3C validator |