![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iordsmo | GIF version |
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
iordsmo.1 | β’ Ord π΄ |
Ref | Expression |
---|---|
iordsmo | β’ Smo ( I βΎ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresi 5335 | . . 3 β’ ( I βΎ π΄) Fn π΄ | |
2 | rnresi 4987 | . . . 4 β’ ran ( I βΎ π΄) = π΄ | |
3 | iordsmo.1 | . . . . 5 β’ Ord π΄ | |
4 | ordsson 4493 | . . . . 5 β’ (Ord π΄ β π΄ β On) | |
5 | 3, 4 | ax-mp 5 | . . . 4 β’ π΄ β On |
6 | 2, 5 | eqsstri 3189 | . . 3 β’ ran ( I βΎ π΄) β On |
7 | df-f 5222 | . . 3 β’ (( I βΎ π΄):π΄βΆOn β (( I βΎ π΄) Fn π΄ β§ ran ( I βΎ π΄) β On)) | |
8 | 1, 6, 7 | mpbir2an 942 | . 2 β’ ( I βΎ π΄):π΄βΆOn |
9 | fvresi 5711 | . . . . 5 β’ (π₯ β π΄ β (( I βΎ π΄)βπ₯) = π₯) | |
10 | 9 | adantr 276 | . . . 4 β’ ((π₯ β π΄ β§ π¦ β π΄) β (( I βΎ π΄)βπ₯) = π₯) |
11 | fvresi 5711 | . . . . 5 β’ (π¦ β π΄ β (( I βΎ π΄)βπ¦) = π¦) | |
12 | 11 | adantl 277 | . . . 4 β’ ((π₯ β π΄ β§ π¦ β π΄) β (( I βΎ π΄)βπ¦) = π¦) |
13 | 10, 12 | eleq12d 2248 | . . 3 β’ ((π₯ β π΄ β§ π¦ β π΄) β ((( I βΎ π΄)βπ₯) β (( I βΎ π΄)βπ¦) β π₯ β π¦)) |
14 | 13 | biimprd 158 | . 2 β’ ((π₯ β π΄ β§ π¦ β π΄) β (π₯ β π¦ β (( I βΎ π΄)βπ₯) β (( I βΎ π΄)βπ¦))) |
15 | dmresi 4964 | . 2 β’ dom ( I βΎ π΄) = π΄ | |
16 | 8, 3, 14, 15 | issmo 6291 | 1 β’ Smo ( I βΎ π΄) |
Colors of variables: wff set class |
Syntax hints: β§ wa 104 = wceq 1353 β wcel 2148 β wss 3131 I cid 4290 Ord word 4364 Oncon0 4365 ran crn 4629 βΎ cres 4630 Fn wfn 5213 βΆwf 5214 βcfv 5218 Smo wsmo 6288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-smo 6289 |
This theorem is referenced by: smo0 6301 |
Copyright terms: Public domain | W3C validator |