ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpmg GIF version

Theorem elpmg 6718
Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
elpmg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))

Proof of Theorem elpmg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 pmvalg 6713 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴pm 𝐵) = {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔})
21eleq2d 2263 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ 𝐶 ∈ {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔}))
3 funeq 5274 . . . . 5 (𝑔 = 𝐶 → (Fun 𝑔 ↔ Fun 𝐶))
43elrab 2916 . . . 4 (𝐶 ∈ {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔} ↔ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶))
52, 4bitrdi 196 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶)))
6 ancom 266 . . 3 ((𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶) ↔ (Fun 𝐶𝐶 ∈ 𝒫 (𝐵 × 𝐴)))
75, 6bitrdi 196 . 2 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ∈ 𝒫 (𝐵 × 𝐴))))
8 elex 2771 . . . . 5 (𝐶 ∈ 𝒫 (𝐵 × 𝐴) → 𝐶 ∈ V)
98a1i 9 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) → 𝐶 ∈ V))
10 xpexg 4773 . . . . . 6 ((𝐵𝑊𝐴𝑉) → (𝐵 × 𝐴) ∈ V)
1110ancoms 268 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐵 × 𝐴) ∈ V)
12 ssexg 4168 . . . . . 6 ((𝐶 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ∈ V) → 𝐶 ∈ V)
1312expcom 116 . . . . 5 ((𝐵 × 𝐴) ∈ V → (𝐶 ⊆ (𝐵 × 𝐴) → 𝐶 ∈ V))
1411, 13syl 14 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ⊆ (𝐵 × 𝐴) → 𝐶 ∈ V))
15 elpwg 3609 . . . . 5 (𝐶 ∈ V → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴)))
1615a1i 9 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ V → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴))))
179, 14, 16pm5.21ndd 706 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴)))
1817anbi2d 464 . 2 ((𝐴𝑉𝐵𝑊) → ((Fun 𝐶𝐶 ∈ 𝒫 (𝐵 × 𝐴)) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))
197, 18bitrd 188 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  {crab 2476  Vcvv 2760  wss 3153  𝒫 cpw 3601   × cxp 4657  Fun wfun 5248  (class class class)co 5918  pm cpm 6703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pm 6705
This theorem is referenced by:  elpm2g  6719  pmss12g  6729  elpm  6733  pmsspw  6737  ennnfonelemj0  12558  lmfss  14412
  Copyright terms: Public domain W3C validator