ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelvu GIF version

Theorem genpelvu 7503
Description: Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpelvu ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑔,,𝑤,𝑣   𝑔,𝐹   𝐶,𝑔,
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpelvu
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genipv 7499 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩)
43fveq2d 5515 . . . . 5 ((𝐴P𝐵P) → (2nd ‘(𝐴𝐹𝐵)) = (2nd ‘⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩))
5 nqex 7353 . . . . . . 7 Q ∈ V
65rabex 4144 . . . . . 6 {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)} ∈ V
75rabex 4144 . . . . . 6 {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)} ∈ V
86, 7op2nd 6142 . . . . 5 (2nd ‘⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩) = {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}
94, 8eqtrdi 2226 . . . 4 ((𝐴P𝐵P) → (2nd ‘(𝐴𝐹𝐵)) = {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)})
109eleq2d 2247 . . 3 ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ 𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}))
11 elrabi 2890 . . 3 (𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)} → 𝐶Q)
1210, 11syl6bi 163 . 2 ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝐶Q))
13 prop 7465 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
14 elprnqu 7472 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑔 ∈ (2nd𝐴)) → 𝑔Q)
1513, 14sylan 283 . . . . . 6 ((𝐴P𝑔 ∈ (2nd𝐴)) → 𝑔Q)
16 prop 7465 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
17 elprnqu 7472 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∈ (2nd𝐵)) → Q)
1816, 17sylan 283 . . . . . 6 ((𝐵P ∈ (2nd𝐵)) → Q)
192caovcl 6023 . . . . . 6 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
2015, 18, 19syl2an 289 . . . . 5 (((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) → (𝑔𝐺) ∈ Q)
2120an4s 588 . . . 4 (((𝐴P𝐵P) ∧ (𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵))) → (𝑔𝐺) ∈ Q)
22 eleq1 2240 . . . 4 (𝐶 = (𝑔𝐺) → (𝐶Q ↔ (𝑔𝐺) ∈ Q))
2321, 22syl5ibrcom 157 . . 3 (((𝐴P𝐵P) ∧ (𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵))) → (𝐶 = (𝑔𝐺) → 𝐶Q))
2423rexlimdvva 2602 . 2 ((𝐴P𝐵P) → (∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺) → 𝐶Q))
25 eqeq1 2184 . . . . . 6 (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺) ↔ 𝐶 = (𝑔𝐺)))
26252rexbidv 2502 . . . . 5 (𝑓 = 𝐶 → (∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
2726elrab3 2894 . . . 4 (𝐶Q → (𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)} ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
2810, 27sylan9bb 462 . . 3 (((𝐴P𝐵P) ∧ 𝐶Q) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
2928ex 115 . 2 ((𝐴P𝐵P) → (𝐶Q → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺))))
3012, 24, 29pm5.21ndd 705 1 ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wrex 2456  {crab 2459  cop 3594  cfv 5212  (class class class)co 5869  cmpo 5871  1st c1st 6133  2nd c2nd 6134  Qcnq 7270  Pcnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-qs 6535  df-ni 7294  df-nqqs 7338  df-inp 7456
This theorem is referenced by:  genppreclu  7505  genpcuu  7510  genprndu  7512  genpdisj  7513  genpassu  7515  addnqprlemru  7548  mulnqprlemru  7564  distrlem1pru  7573  distrlem5pru  7577  1idpru  7581  ltexprlemfu  7601  recexprlem1ssu  7624  recexprlemss1u  7626  cauappcvgprlemladdfu  7644  caucvgprlemladdfu  7667
  Copyright terms: Public domain W3C validator