![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfxr | GIF version |
Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
mnfxr | ⊢ -∞ ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnf 7586 | . . . . 5 ⊢ -∞ = 𝒫 +∞ | |
2 | pnfex 7602 | . . . . . 6 ⊢ +∞ ∈ V | |
3 | 2 | pwex 4024 | . . . . 5 ⊢ 𝒫 +∞ ∈ V |
4 | 1, 3 | eqeltri 2161 | . . . 4 ⊢ -∞ ∈ V |
5 | 4 | prid2 3553 | . . 3 ⊢ -∞ ∈ {+∞, -∞} |
6 | elun2 3169 | . . 3 ⊢ (-∞ ∈ {+∞, -∞} → -∞ ∈ (ℝ ∪ {+∞, -∞})) | |
7 | 5, 6 | ax-mp 7 | . 2 ⊢ -∞ ∈ (ℝ ∪ {+∞, -∞}) |
8 | df-xr 7587 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
9 | 7, 8 | eleqtrri 2164 | 1 ⊢ -∞ ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1439 Vcvv 2620 ∪ cun 2998 𝒫 cpw 3433 {cpr 3451 ℝcr 7410 +∞cpnf 7580 -∞cmnf 7581 ℝ*cxr 7582 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-un 4269 ax-cnex 7497 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-uni 3660 df-pnf 7585 df-mnf 7586 df-xr 7587 |
This theorem is referenced by: elxr 9308 xrltnr 9311 mnflt 9314 mnfltpnf 9316 nltmnf 9319 mnfle 9323 xrltnsym 9324 xrlttri3 9328 ngtmnft 9341 xrrebnd 9342 xrre2 9344 xrre3 9345 ge0gtmnf 9346 xnegcl 9355 xltnegi 9358 xrex 9366 elioc2 9415 elico2 9416 elicc2 9417 ioomax 9427 iccmax 9428 elioomnf 9447 unirnioo 9452 |
Copyright terms: Public domain | W3C validator |