| Step | Hyp | Ref
| Expression |
| 1 | | psrgrp.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 2 | | eqid 2196 |
. . . 4
⊢ {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 3 | | fnmap 6723 |
. . . . 5
⊢
↑𝑚 Fn (V × V) |
| 4 | | nn0ex 9272 |
. . . . 5
⊢
ℕ0 ∈ V |
| 5 | | psrgrp.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 6 | 5 | elexd 2776 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ V) |
| 7 | | fnovex 5958 |
. . . . 5
⊢ ((
↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V
∧ 𝐼 ∈ V) →
(ℕ0 ↑𝑚 𝐼) ∈ V) |
| 8 | 3, 4, 6, 7 | mp3an12i 1352 |
. . . 4
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) |
| 9 | 2, 8 | rabexd 4179 |
. . 3
⊢ (𝜑 → {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V) |
| 10 | | eqid 2196 |
. . . 4
⊢ (𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = (𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
| 11 | 10 | pwsgrp 13313 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V)
→ (𝑅
↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈
Grp) |
| 12 | 1, 9, 11 | syl2anc 411 |
. 2
⊢ (𝜑 → (𝑅 ↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈
Grp) |
| 13 | | eqid 2196 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 14 | 10, 13 | pwsbas 12994 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V)
→ ((Base‘𝑅)
↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
| 15 | 1, 9, 14 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
| 16 | | psrgrp.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 17 | | eqid 2196 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 18 | 16, 13, 2, 17, 5, 1 | psrbasg 14303 |
. . . 4
⊢ (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})) |
| 19 | 18 | eqcomd 2202 |
. . 3
⊢ (𝜑 → ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) =
(Base‘𝑆)) |
| 20 | | eqid 2196 |
. . . . 5
⊢
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) =
(Base‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})) |
| 21 | 1 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑅 ∈ Grp) |
| 22 | 9 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V) |
| 23 | 15 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})))) |
| 24 | 23 | biimpa 296 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
| 25 | 24 | adantrr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
| 26 | 15 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})))) |
| 27 | 26 | biimpa 296 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
| 28 | 27 | adantrl 478 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘(𝑅 ↑s
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
| 29 | | eqid 2196 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 30 | | eqid 2196 |
. . . . 5
⊢
(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) =
(+g‘(𝑅
↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin})) |
| 31 | 10, 20, 21, 22, 25, 28, 29, 30 | pwsplusgval 12997 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥 ∘𝑓
(+g‘𝑅)𝑦)) |
| 32 | | eqid 2196 |
. . . . 5
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 33 | 18 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑆) ↔ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
| 34 | 33 | biimpar 297 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘𝑆)) |
| 35 | 34 | adantrr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘𝑆)) |
| 36 | 18 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ (Base‘𝑆) ↔ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}))) |
| 37 | 36 | biimpar 297 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘𝑆)) |
| 38 | 37 | adantrl 478 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘𝑆)) |
| 39 | 16, 17, 29, 32, 35, 38 | psradd 14307 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘𝑆)𝑦) = (𝑥 ∘𝑓
(+g‘𝑅)𝑦)) |
| 40 | 31, 39 | eqtr4d 2232 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚
{𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))) →
(𝑥(+g‘(𝑅 ↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥(+g‘𝑆)𝑦)) |
| 41 | 15, 19, 40 | grppropd 13219 |
. 2
⊢ (𝜑 → ((𝑅 ↑s {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ∈ Grp
↔ 𝑆 ∈
Grp)) |
| 42 | 12, 41 | mpbid 147 |
1
⊢ (𝜑 → 𝑆 ∈ Grp) |