ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrgrp GIF version

Theorem psrgrp 14313
Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
psrgrp (𝜑𝑆 ∈ Grp)

Proof of Theorem psrgrp
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrgrp.r . . 3 (𝜑𝑅 ∈ Grp)
2 eqid 2196 . . . 4 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3 fnmap 6723 . . . . 5 𝑚 Fn (V × V)
4 nn0ex 9272 . . . . 5 0 ∈ V
5 psrgrp.i . . . . . 6 (𝜑𝐼𝑉)
65elexd 2776 . . . . 5 (𝜑𝐼 ∈ V)
7 fnovex 5958 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0𝑚 𝐼) ∈ V)
83, 4, 6, 7mp3an12i 1352 . . . 4 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
92, 8rabexd 4179 . . 3 (𝜑 → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
10 eqid 2196 . . . 4 (𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
1110pwsgrp 13313 . . 3 ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V) → (𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Grp)
121, 9, 11syl2anc 411 . 2 (𝜑 → (𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Grp)
13 eqid 2196 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1410, 13pwsbas 12994 . . . 4 ((𝑅 ∈ Grp ∧ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V) → ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
151, 9, 14syl2anc 411 . . 3 (𝜑 → ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
16 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
17 eqid 2196 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
1816, 13, 2, 17, 5, 1psrbasg 14303 . . . 4 (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
1918eqcomd 2202 . . 3 (𝜑 → ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘𝑆))
20 eqid 2196 . . . . 5 (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) = (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
211adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑅 ∈ Grp)
229adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
2315eleq2d 2266 . . . . . . 7 (𝜑 → (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))))
2423biimpa 296 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
2524adantrr 479 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
2615eleq2d 2266 . . . . . . 7 (𝜑 → (𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))))
2726biimpa 296 . . . . . 6 ((𝜑𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
2827adantrl 478 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
29 eqid 2196 . . . . 5 (+g𝑅) = (+g𝑅)
30 eqid 2196 . . . . 5 (+g‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) = (+g‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3110, 20, 21, 22, 25, 28, 29, 30pwsplusgval 12997 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
32 eqid 2196 . . . . 5 (+g𝑆) = (+g𝑆)
3318eleq2d 2266 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝑆) ↔ 𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
3433biimpar 297 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘𝑆))
3534adantrr 479 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘𝑆))
3618eleq2d 2266 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘𝑆) ↔ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
3736biimpar 297 . . . . . 6 ((𝜑𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘𝑆))
3837adantrl 478 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘𝑆))
3916, 17, 29, 32, 35, 38psradd 14307 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g𝑆)𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
4031, 39eqtr4d 2232 . . 3 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g‘(𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥(+g𝑆)𝑦))
4115, 19, 40grppropd 13219 . 2 (𝜑 → ((𝑅s {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Grp ↔ 𝑆 ∈ Grp))
4212, 41mpbid 147 1 (𝜑𝑆 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763   × cxp 4662  ccnv 4663  cima 4667   Fn wfn 5254  cfv 5259  (class class class)co 5925  𝑓 cof 6137  𝑚 cmap 6716  Fincfn 6808  cn 9007  0cn0 9266  Basecbs 12703  +gcplusg 12780  s cpws 12968  Grpcgrp 13202   mPwSer cmps 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-hom 12804  df-cco 12805  df-rest 12943  df-topn 12944  df-0g 12960  df-topgen 12962  df-pt 12963  df-prds 12969  df-pws 12992  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-psr 14294
This theorem is referenced by:  psr0  14314  psrneg  14315
  Copyright terms: Public domain W3C validator