| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrlinv | GIF version | ||
| Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| psrnegcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrnegcl.i | ⊢ 𝑁 = (invg‘𝑅) |
| psrnegcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrnegcl.z | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psrlinv.o | ⊢ 0 = (0g‘𝑅) |
| psrlinv.p | ⊢ + = (+g‘𝑆) |
| Ref | Expression |
|---|---|
| psrlinv | ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrnegcl.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | fnmap 6772 | . . . . 5 ⊢ ↑𝑚 Fn (V × V) | |
| 3 | nn0ex 9343 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | psrgrp.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | 4 | elexd 2793 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 6 | fnovex 6007 | . . . . 5 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 7 | 2, 3, 5, 6 | mp3an12i 1356 | . . . 4 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
| 8 | 1, 7 | rabexd 4208 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 9 | psrgrp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 10 | psrgrp.s | . . . . . 6 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 11 | eqid 2209 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 12 | psrnegcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 13 | psrnegcl.z | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | 10, 11, 1, 12, 13 | psrelbas 14604 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 15 | 14 | ffvelcdmda 5743 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 16 | psrnegcl.i | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
| 17 | 11, 16 | grpinvcl 13547 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → (𝑁‘(𝑋‘𝑥)) ∈ (Base‘𝑅)) |
| 18 | 9, 15, 17 | syl2an2r 597 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑁‘(𝑋‘𝑥)) ∈ (Base‘𝑅)) |
| 19 | 14 | feqmptd 5660 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐷 ↦ (𝑋‘𝑥))) |
| 20 | 11, 16, 9 | grpinvf1o 13569 | . . . . . 6 ⊢ (𝜑 → 𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
| 21 | f1of 5548 | . . . . . 6 ⊢ (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) | |
| 22 | 20, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) |
| 23 | 22 | feqmptd 5660 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁‘𝑦))) |
| 24 | fveq2 5603 | . . . 4 ⊢ (𝑦 = (𝑋‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑋‘𝑥))) | |
| 25 | 15, 19, 23, 24 | fmptco 5774 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑁‘(𝑋‘𝑥)))) |
| 26 | 8, 18, 15, 25, 19 | offval2 6204 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) ∘𝑓 (+g‘𝑅)𝑋) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 27 | eqid 2209 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 28 | psrlinv.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 29 | 10, 4, 9, 1, 16, 12, 13 | psrnegcl 14612 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) |
| 30 | 10, 12, 27, 28, 29, 13 | psradd 14608 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = ((𝑁 ∘ 𝑋) ∘𝑓 (+g‘𝑅)𝑋)) |
| 31 | fconstmpt 4743 | . . 3 ⊢ (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ 0 ) | |
| 32 | psrlinv.o | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 33 | 11, 27, 32, 16 | grplinv 13549 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 34 | 9, 15, 33 | syl2an2r 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 35 | 34 | mpteq2dva 4153 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥))) = (𝑥 ∈ 𝐷 ↦ 0 )) |
| 36 | 31, 35 | eqtr4id 2261 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 37 | 26, 30, 36 | 3eqtr4d 2252 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 {crab 2492 Vcvv 2779 {csn 3646 ↦ cmpt 4124 × cxp 4694 ◡ccnv 4695 “ cima 4699 ∘ ccom 4700 Fn wfn 5289 ⟶wf 5290 –1-1-onto→wf1o 5293 ‘cfv 5294 (class class class)co 5974 ∘𝑓 cof 6186 ↑𝑚 cmap 6765 Fincfn 6857 ℕcn 9078 ℕ0cn0 9337 Basecbs 12998 +gcplusg 13076 0gc0g 13255 Grpcgrp 13499 invgcminusg 13500 mPwSer cmps 14590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-tset 13095 df-rest 13240 df-topn 13241 df-0g 13257 df-topgen 13259 df-pt 13260 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-psr 14592 |
| This theorem is referenced by: psrneg 14616 |
| Copyright terms: Public domain | W3C validator |