| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrlinv | GIF version | ||
| Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| psrnegcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrnegcl.i | ⊢ 𝑁 = (invg‘𝑅) |
| psrnegcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrnegcl.z | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psrlinv.o | ⊢ 0 = (0g‘𝑅) |
| psrlinv.p | ⊢ + = (+g‘𝑆) |
| Ref | Expression |
|---|---|
| psrlinv | ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrnegcl.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | fnmap 6749 | . . . . 5 ⊢ ↑𝑚 Fn (V × V) | |
| 3 | nn0ex 9308 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | psrgrp.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | 4 | elexd 2786 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 6 | fnovex 5984 | . . . . 5 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 7 | 2, 3, 5, 6 | mp3an12i 1354 | . . . 4 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
| 8 | 1, 7 | rabexd 4193 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 9 | psrgrp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 10 | psrgrp.s | . . . . . 6 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 11 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 12 | psrnegcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 13 | psrnegcl.z | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | 10, 11, 1, 12, 13 | psrelbas 14481 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 15 | 14 | ffvelcdmda 5722 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 16 | psrnegcl.i | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
| 17 | 11, 16 | grpinvcl 13424 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → (𝑁‘(𝑋‘𝑥)) ∈ (Base‘𝑅)) |
| 18 | 9, 15, 17 | syl2an2r 595 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑁‘(𝑋‘𝑥)) ∈ (Base‘𝑅)) |
| 19 | 14 | feqmptd 5639 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐷 ↦ (𝑋‘𝑥))) |
| 20 | 11, 16, 9 | grpinvf1o 13446 | . . . . . 6 ⊢ (𝜑 → 𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
| 21 | f1of 5529 | . . . . . 6 ⊢ (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) | |
| 22 | 20, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) |
| 23 | 22 | feqmptd 5639 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁‘𝑦))) |
| 24 | fveq2 5583 | . . . 4 ⊢ (𝑦 = (𝑋‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑋‘𝑥))) | |
| 25 | 15, 19, 23, 24 | fmptco 5753 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑁‘(𝑋‘𝑥)))) |
| 26 | 8, 18, 15, 25, 19 | offval2 6181 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) ∘𝑓 (+g‘𝑅)𝑋) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 27 | eqid 2206 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 28 | psrlinv.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 29 | 10, 4, 9, 1, 16, 12, 13 | psrnegcl 14489 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) |
| 30 | 10, 12, 27, 28, 29, 13 | psradd 14485 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = ((𝑁 ∘ 𝑋) ∘𝑓 (+g‘𝑅)𝑋)) |
| 31 | fconstmpt 4726 | . . 3 ⊢ (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ 0 ) | |
| 32 | psrlinv.o | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 33 | 11, 27, 32, 16 | grplinv 13426 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 34 | 9, 15, 33 | syl2an2r 595 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 35 | 34 | mpteq2dva 4138 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥))) = (𝑥 ∈ 𝐷 ↦ 0 )) |
| 36 | 31, 35 | eqtr4id 2258 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 37 | 26, 30, 36 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {crab 2489 Vcvv 2773 {csn 3634 ↦ cmpt 4109 × cxp 4677 ◡ccnv 4678 “ cima 4682 ∘ ccom 4683 Fn wfn 5271 ⟶wf 5272 –1-1-onto→wf1o 5275 ‘cfv 5276 (class class class)co 5951 ∘𝑓 cof 6163 ↑𝑚 cmap 6742 Fincfn 6834 ℕcn 9043 ℕ0cn0 9302 Basecbs 12876 +gcplusg 12953 0gc0g 13132 Grpcgrp 13376 invgcminusg 13377 mPwSer cmps 14467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-map 6744 df-ixp 6793 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-tset 12972 df-rest 13117 df-topn 13118 df-0g 13134 df-topgen 13136 df-pt 13137 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-psr 14469 |
| This theorem is referenced by: psrneg 14493 |
| Copyright terms: Public domain | W3C validator |