| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrlinv | GIF version | ||
| Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| psrnegcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrnegcl.i | ⊢ 𝑁 = (invg‘𝑅) |
| psrnegcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrnegcl.z | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| psrlinv.o | ⊢ 0 = (0g‘𝑅) |
| psrlinv.p | ⊢ + = (+g‘𝑆) |
| Ref | Expression |
|---|---|
| psrlinv | ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrnegcl.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | fnmap 6723 | . . . . 5 ⊢ ↑𝑚 Fn (V × V) | |
| 3 | nn0ex 9272 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | psrgrp.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | 4 | elexd 2776 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 6 | fnovex 5958 | . . . . 5 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 7 | 2, 3, 5, 6 | mp3an12i 1352 | . . . 4 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
| 8 | 1, 7 | rabexd 4179 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 9 | psrgrp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 10 | psrgrp.s | . . . . . 6 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 11 | eqid 2196 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 12 | psrnegcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 13 | psrnegcl.z | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | 10, 11, 1, 12, 13 | psrelbas 14304 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 15 | 14 | ffvelcdmda 5700 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 16 | psrnegcl.i | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
| 17 | 11, 16 | grpinvcl 13250 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → (𝑁‘(𝑋‘𝑥)) ∈ (Base‘𝑅)) |
| 18 | 9, 15, 17 | syl2an2r 595 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑁‘(𝑋‘𝑥)) ∈ (Base‘𝑅)) |
| 19 | 14 | feqmptd 5617 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐷 ↦ (𝑋‘𝑥))) |
| 20 | 11, 16, 9 | grpinvf1o 13272 | . . . . . 6 ⊢ (𝜑 → 𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
| 21 | f1of 5507 | . . . . . 6 ⊢ (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) | |
| 22 | 20, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) |
| 23 | 22 | feqmptd 5617 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁‘𝑦))) |
| 24 | fveq2 5561 | . . . 4 ⊢ (𝑦 = (𝑋‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑋‘𝑥))) | |
| 25 | 15, 19, 23, 24 | fmptco 5731 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑁‘(𝑋‘𝑥)))) |
| 26 | 8, 18, 15, 25, 19 | offval2 6155 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) ∘𝑓 (+g‘𝑅)𝑋) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 27 | eqid 2196 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 28 | psrlinv.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 29 | 10, 4, 9, 1, 16, 12, 13 | psrnegcl 14311 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) |
| 30 | 10, 12, 27, 28, 29, 13 | psradd 14307 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = ((𝑁 ∘ 𝑋) ∘𝑓 (+g‘𝑅)𝑋)) |
| 31 | fconstmpt 4711 | . . 3 ⊢ (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ 0 ) | |
| 32 | psrlinv.o | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 33 | 11, 27, 32, 16 | grplinv 13252 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 34 | 9, 15, 33 | syl2an2r 595 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
| 35 | 34 | mpteq2dva 4124 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥))) = (𝑥 ∈ 𝐷 ↦ 0 )) |
| 36 | 31, 35 | eqtr4id 2248 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
| 37 | 26, 30, 36 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {crab 2479 Vcvv 2763 {csn 3623 ↦ cmpt 4095 × cxp 4662 ◡ccnv 4663 “ cima 4667 ∘ ccom 4668 Fn wfn 5254 ⟶wf 5255 –1-1-onto→wf1o 5258 ‘cfv 5259 (class class class)co 5925 ∘𝑓 cof 6137 ↑𝑚 cmap 6716 Fincfn 6808 ℕcn 9007 ℕ0cn0 9266 Basecbs 12703 +gcplusg 12780 0gc0g 12958 Grpcgrp 13202 invgcminusg 13203 mPwSer cmps 14293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-tset 12799 df-rest 12943 df-topn 12944 df-0g 12960 df-topgen 12962 df-pt 12963 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-psr 14294 |
| This theorem is referenced by: psrneg 14315 |
| Copyright terms: Public domain | W3C validator |