| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psr0cl | GIF version | ||
| Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| psr0cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psr0cl.o | ⊢ 0 = (0g‘𝑅) |
| psr0cl.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| psr0cl | ⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 2 | eqid 2209 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | psr0cl.o | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 13528 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
| 5 | fconst6g 5500 | . . . 4 ⊢ ( 0 ∈ (Base‘𝑅) → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅)) | |
| 6 | 1, 4, 5 | 3syl 17 | . . 3 ⊢ (𝜑 → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅)) |
| 7 | basfn 13057 | . . . . 5 ⊢ Base Fn V | |
| 8 | 1 | elexd 2793 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 9 | funfvex 5620 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 10 | 9 | funfni 5399 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 11 | 7, 8, 10 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 12 | psr0cl.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 13 | fnmap 6772 | . . . . . 6 ⊢ ↑𝑚 Fn (V × V) | |
| 14 | nn0ex 9343 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 15 | psrgrp.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 16 | 15 | elexd 2793 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 17 | fnovex 6007 | . . . . . 6 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 18 | 13, 14, 16, 17 | mp3an12i 1356 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
| 19 | 12, 18 | rabexd 4208 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 20 | 11, 19 | elmapd 6779 | . . 3 ⊢ (𝜑 → ((𝐷 × { 0 }) ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))) |
| 21 | 6, 20 | mpbird 167 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ ((Base‘𝑅) ↑𝑚 𝐷)) |
| 22 | psrgrp.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 23 | psr0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 24 | 22, 2, 12, 23, 15, 1 | psrbasg 14603 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑𝑚 𝐷)) |
| 25 | 21, 24 | eleqtrrd 2289 | 1 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 {crab 2492 Vcvv 2779 {csn 3646 × cxp 4694 ◡ccnv 4695 “ cima 4699 Fn wfn 5289 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ↑𝑚 cmap 6765 Fincfn 6857 ℕcn 9078 ℕ0cn0 9337 Basecbs 12998 0gc0g 13255 Grpcgrp 13499 mPwSer cmps 14590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-tset 13095 df-rest 13240 df-topn 13241 df-0g 13257 df-topgen 13259 df-pt 13260 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-psr 14592 |
| This theorem is referenced by: psr0lid 14611 psr0 14615 mplsubgfilemm 14627 |
| Copyright terms: Public domain | W3C validator |