Step | Hyp | Ref
| Expression |
1 | | psrbas.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | psrbas.k |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
3 | | eqid 2193 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
4 | | eqid 2193 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
5 | | eqid 2193 |
. . . 4
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
6 | | psrbas.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
7 | | eqidd 2194 |
. . . 4
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) = (𝐾 ↑𝑚 𝐷)) |
8 | | eqid 2193 |
. . . 4
⊢ (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷))) = (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷))) |
9 | | eqid 2193 |
. . . 4
⊢ (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥))))))) |
10 | | eqid 2193 |
. . . 4
⊢ (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔)) = (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔)) |
11 | | eqidd 2194 |
. . . 4
⊢ (𝜑 →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)}))) |
12 | | psrbas.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
13 | | psrbasg.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | psrval 14152 |
. . 3
⊢ (𝜑 → 𝑆 = ({〈(Base‘ndx), (𝐾 ↑𝑚
𝐷)〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑅)
↾ ((𝐾
↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
15 | 14 | fveq2d 5558 |
. 2
⊢ (𝜑 → (Base‘𝑆) =
(Base‘({〈(Base‘ndx), (𝐾 ↑𝑚 𝐷)〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑅)
↾ ((𝐾
↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) |
16 | | psrbas.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
17 | 16 | a1i 9 |
. 2
⊢ (𝜑 → 𝐵 = (Base‘𝑆)) |
18 | | basfn 12676 |
. . . . . . . 8
⊢ Base Fn
V |
19 | 13 | elexd 2773 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ V) |
20 | | funfvex 5571 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
21 | 20 | funfni 5354 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
22 | 18, 19, 21 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
23 | 2, 22 | eqeltrid 2280 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ V) |
24 | | nn0ex 9246 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
25 | | mapvalg 6712 |
. . . . . . . . 9
⊢
((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑉) → (ℕ0
↑𝑚 𝐼) = {𝑝 ∣ 𝑝:𝐼⟶ℕ0}) |
26 | 24, 12, 25 | sylancr 414 |
. . . . . . . 8
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) = {𝑝 ∣ 𝑝:𝐼⟶ℕ0}) |
27 | 24 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → ℕ0 ∈
V) |
28 | | mapex 6708 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ ℕ0 ∈ V) →
{𝑝 ∣ 𝑝:𝐼⟶ℕ0} ∈
V) |
29 | 12, 27, 28 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → {𝑝 ∣ 𝑝:𝐼⟶ℕ0} ∈
V) |
30 | 26, 29 | eqeltrd 2270 |
. . . . . . 7
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) |
31 | 6, 30 | rabexd 4174 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ V) |
32 | | mapvalg 6712 |
. . . . . 6
⊢ ((𝐾 ∈ V ∧ 𝐷 ∈ V) → (𝐾 ↑𝑚
𝐷) = {𝑝 ∣ 𝑝:𝐷⟶𝐾}) |
33 | 23, 31, 32 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) = {𝑝 ∣ 𝑝:𝐷⟶𝐾}) |
34 | | mapex 6708 |
. . . . . 6
⊢ ((𝐷 ∈ V ∧ 𝐾 ∈ V) → {𝑝 ∣ 𝑝:𝐷⟶𝐾} ∈ V) |
35 | 31, 23, 34 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → {𝑝 ∣ 𝑝:𝐷⟶𝐾} ∈ V) |
36 | 33, 35 | eqeltrd 2270 |
. . . 4
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) ∈ V) |
37 | 36, 36 | ofmresex 6189 |
. . . 4
⊢ (𝜑 → (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷))) ∈ V) |
38 | | mpoexga 6265 |
. . . . 5
⊢ (((𝐾 ↑𝑚
𝐷) ∈ V ∧ (𝐾 ↑𝑚
𝐷) ∈ V) → (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V) |
39 | 36, 36, 38 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V) |
40 | | mpoexga 6265 |
. . . . 5
⊢ ((𝐾 ∈ V ∧ (𝐾 ↑𝑚
𝐷) ∈ V) → (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔)) ∈ V) |
41 | 23, 36, 40 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔)) ∈ V) |
42 | | topnfn 12855 |
. . . . . . . 8
⊢ TopOpen
Fn V |
43 | | funfvex 5571 |
. . . . . . . . 9
⊢ ((Fun
TopOpen ∧ 𝑅 ∈ dom
TopOpen) → (TopOpen‘𝑅) ∈ V) |
44 | 43 | funfni 5354 |
. . . . . . . 8
⊢ ((TopOpen
Fn V ∧ 𝑅 ∈ V)
→ (TopOpen‘𝑅)
∈ V) |
45 | 42, 19, 44 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → (TopOpen‘𝑅) ∈ V) |
46 | | snexg 4213 |
. . . . . . 7
⊢
((TopOpen‘𝑅)
∈ V → {(TopOpen‘𝑅)} ∈ V) |
47 | 45, 46 | syl 14 |
. . . . . 6
⊢ (𝜑 → {(TopOpen‘𝑅)} ∈ V) |
48 | | xpexg 4773 |
. . . . . 6
⊢ ((𝐷 ∈ V ∧
{(TopOpen‘𝑅)} ∈
V) → (𝐷 ×
{(TopOpen‘𝑅)}) ∈
V) |
49 | 31, 47, 48 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝐷 × {(TopOpen‘𝑅)}) ∈ V) |
50 | | ptex 12875 |
. . . . 5
⊢ ((𝐷 × {(TopOpen‘𝑅)}) ∈ V →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) ∈ V) |
51 | 49, 50 | syl 14 |
. . . 4
⊢ (𝜑 →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) ∈ V) |
52 | 36, 37, 39, 13, 41, 51 | psrvalstrd 14154 |
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) Struct 〈1,
9〉) |
53 | | basendxnn 12674 |
. . . . 5
⊢
(Base‘ndx) ∈ ℕ |
54 | | opexg 4257 |
. . . . 5
⊢
(((Base‘ndx) ∈ ℕ ∧ (𝐾 ↑𝑚 𝐷) ∈ V) →
〈(Base‘ndx), (𝐾
↑𝑚 𝐷)〉 ∈ V) |
55 | 53, 36, 54 | sylancr 414 |
. . . 4
⊢ (𝜑 → 〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉 ∈ V) |
56 | | tpid1g 3730 |
. . . 4
⊢
(〈(Base‘ndx), (𝐾 ↑𝑚 𝐷)〉 ∈ V →
〈(Base‘ndx), (𝐾
↑𝑚 𝐷)〉 ∈ {〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉}) |
57 | | elun1 3326 |
. . . 4
⊢
(〈(Base‘ndx), (𝐾 ↑𝑚 𝐷)〉 ∈
{〈(Base‘ndx), (𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} →
〈(Base‘ndx), (𝐾
↑𝑚 𝐷)〉 ∈ ({〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
58 | 55, 56, 57 | 3syl 17 |
. . 3
⊢ (𝜑 → 〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉 ∈ ({〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
59 | 52, 36, 58 | opelstrbas 12733 |
. 2
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) =
(Base‘({〈(Base‘ndx), (𝐾 ↑𝑚 𝐷)〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑅)
↾ ((𝐾
↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) |
60 | 15, 17, 59 | 3eqtr4d 2236 |
1
⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) |