ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbasg GIF version

Theorem psrbasg 14303
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
psrbasg.r (𝜑𝑅𝑊)
Assertion
Ref Expression
psrbasg (𝜑𝐵 = (𝐾𝑚 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem psrbasg
Dummy variables 𝑔 𝑘 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . 4 𝐾 = (Base‘𝑅)
3 eqid 2196 . . . 4 (+g𝑅) = (+g𝑅)
4 eqid 2196 . . . 4 (.r𝑅) = (.r𝑅)
5 eqid 2196 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2197 . . . 4 (𝜑 → (𝐾𝑚 𝐷) = (𝐾𝑚 𝐷))
8 eqid 2196 . . . 4 ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷))) = ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))
9 eqid 2196 . . . 4 (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥))))))) = (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))
10 eqid 2196 . . . 4 (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))
11 eqidd 2197 . . . 4 (𝜑 → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . 4 (𝜑𝐼𝑉)
13 psrbasg.r . . . 4 (𝜑𝑅𝑊)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13psrval 14296 . . 3 (𝜑𝑆 = ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1514fveq2d 5565 . 2 (𝜑 → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
16 psrbas.b . . 3 𝐵 = (Base‘𝑆)
1716a1i 9 . 2 (𝜑𝐵 = (Base‘𝑆))
18 basfn 12761 . . . . . . . 8 Base Fn V
1913elexd 2776 . . . . . . . 8 (𝜑𝑅 ∈ V)
20 funfvex 5578 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2120funfni 5361 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2218, 19, 21sylancr 414 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ V)
232, 22eqeltrid 2283 . . . . . 6 (𝜑𝐾 ∈ V)
24 nn0ex 9272 . . . . . . . . 9 0 ∈ V
25 mapvalg 6726 . . . . . . . . 9 ((ℕ0 ∈ V ∧ 𝐼𝑉) → (ℕ0𝑚 𝐼) = {𝑝𝑝:𝐼⟶ℕ0})
2624, 12, 25sylancr 414 . . . . . . . 8 (𝜑 → (ℕ0𝑚 𝐼) = {𝑝𝑝:𝐼⟶ℕ0})
2724a1i 9 . . . . . . . . 9 (𝜑 → ℕ0 ∈ V)
28 mapex 6722 . . . . . . . . 9 ((𝐼𝑉 ∧ ℕ0 ∈ V) → {𝑝𝑝:𝐼⟶ℕ0} ∈ V)
2912, 27, 28syl2anc 411 . . . . . . . 8 (𝜑 → {𝑝𝑝:𝐼⟶ℕ0} ∈ V)
3026, 29eqeltrd 2273 . . . . . . 7 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
316, 30rabexd 4179 . . . . . 6 (𝜑𝐷 ∈ V)
32 mapvalg 6726 . . . . . 6 ((𝐾 ∈ V ∧ 𝐷 ∈ V) → (𝐾𝑚 𝐷) = {𝑝𝑝:𝐷𝐾})
3323, 31, 32syl2anc 411 . . . . 5 (𝜑 → (𝐾𝑚 𝐷) = {𝑝𝑝:𝐷𝐾})
34 mapex 6722 . . . . . 6 ((𝐷 ∈ V ∧ 𝐾 ∈ V) → {𝑝𝑝:𝐷𝐾} ∈ V)
3531, 23, 34syl2anc 411 . . . . 5 (𝜑 → {𝑝𝑝:𝐷𝐾} ∈ V)
3633, 35eqeltrd 2273 . . . 4 (𝜑 → (𝐾𝑚 𝐷) ∈ V)
3736, 36ofmresex 6203 . . . 4 (𝜑 → ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷))) ∈ V)
38 mpoexga 6279 . . . . 5 (((𝐾𝑚 𝐷) ∈ V ∧ (𝐾𝑚 𝐷) ∈ V) → (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥))))))) ∈ V)
3936, 36, 38syl2anc 411 . . . 4 (𝜑 → (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥))))))) ∈ V)
40 mpoexga 6279 . . . . 5 ((𝐾 ∈ V ∧ (𝐾𝑚 𝐷) ∈ V) → (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔)) ∈ V)
4123, 36, 40syl2anc 411 . . . 4 (𝜑 → (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔)) ∈ V)
42 topnfn 12946 . . . . . . . 8 TopOpen Fn V
43 funfvex 5578 . . . . . . . . 9 ((Fun TopOpen ∧ 𝑅 ∈ dom TopOpen) → (TopOpen‘𝑅) ∈ V)
4443funfni 5361 . . . . . . . 8 ((TopOpen Fn V ∧ 𝑅 ∈ V) → (TopOpen‘𝑅) ∈ V)
4542, 19, 44sylancr 414 . . . . . . 7 (𝜑 → (TopOpen‘𝑅) ∈ V)
46 snexg 4218 . . . . . . 7 ((TopOpen‘𝑅) ∈ V → {(TopOpen‘𝑅)} ∈ V)
4745, 46syl 14 . . . . . 6 (𝜑 → {(TopOpen‘𝑅)} ∈ V)
48 xpexg 4778 . . . . . 6 ((𝐷 ∈ V ∧ {(TopOpen‘𝑅)} ∈ V) → (𝐷 × {(TopOpen‘𝑅)}) ∈ V)
4931, 47, 48syl2anc 411 . . . . 5 (𝜑 → (𝐷 × {(TopOpen‘𝑅)}) ∈ V)
50 ptex 12966 . . . . 5 ((𝐷 × {(TopOpen‘𝑅)}) ∈ V → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) ∈ V)
5149, 50syl 14 . . . 4 (𝜑 → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) ∈ V)
5236, 37, 39, 13, 41, 51psrvalstrd 14298 . . 3 (𝜑 → ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩)
53 basendxnn 12759 . . . . 5 (Base‘ndx) ∈ ℕ
54 opexg 4262 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ (𝐾𝑚 𝐷) ∈ V) → ⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩ ∈ V)
5553, 36, 54sylancr 414 . . . 4 (𝜑 → ⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩ ∈ V)
56 tpid1g 3735 . . . 4 (⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩ ∈ V → ⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩ ∈ {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩})
57 elun1 3331 . . . 4 (⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩ ∈ {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} → ⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩ ∈ ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
5855, 56, 573syl 17 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩ ∈ ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
5952, 36, 58opelstrbas 12818 . 2 (𝜑 → (𝐾𝑚 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
6015, 17, 593eqtr4d 2239 1 (𝜑𝐵 = (𝐾𝑚 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {cab 2182  {crab 2479  Vcvv 2763  cun 3155  {csn 3623  {ctp 3625  cop 3626   class class class wbr 4034  cmpt 4095   × cxp 4662  ccnv 4663  cres 4666  cima 4667   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  𝑓 cof 6137  𝑟 cofr 6138  𝑚 cmap 6716  Fincfn 6808  1c1 7897  cle 8079  cmin 8214  cn 9007  9c9 9065  0cn0 9266  ndxcnx 12700  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  Scalarcsca 12783   ·𝑠 cvsca 12784  TopSetcts 12786  TopOpenctopn 12942  tcpt 12957   Σg cgsu 12959   mPwSer cmps 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-tset 12799  df-rest 12943  df-topn 12944  df-topgen 12962  df-pt 12963  df-psr 14294
This theorem is referenced by:  psrelbas  14304  psrplusgg  14306  psraddcl  14308  psr0cl  14309  psrnegcl  14311  psrgrp  14313  psr1clfi  14316
  Copyright terms: Public domain W3C validator