| Step | Hyp | Ref
 | Expression | 
| 1 |   | psrbas.s | 
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| 2 |   | psrbas.k | 
. . . 4
⊢ 𝐾 = (Base‘𝑅) | 
| 3 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 4 |   | eqid 2196 | 
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 5 |   | eqid 2196 | 
. . . 4
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) | 
| 6 |   | psrbas.d | 
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 7 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) = (𝐾 ↑𝑚 𝐷)) | 
| 8 |   | eqid 2196 | 
. . . 4
⊢ (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷))) = (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷))) | 
| 9 |   | eqid 2196 | 
. . . 4
⊢ (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥))))))) | 
| 10 |   | eqid 2196 | 
. . . 4
⊢ (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔)) = (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔)) | 
| 11 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)}))) | 
| 12 |   | psrbas.i | 
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| 13 |   | psrbasg.r | 
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) | 
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | psrval 14220 | 
. . 3
⊢ (𝜑 → 𝑆 = ({〈(Base‘ndx), (𝐾 ↑𝑚
𝐷)〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑅)
↾ ((𝐾
↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) | 
| 15 | 14 | fveq2d 5562 | 
. 2
⊢ (𝜑 → (Base‘𝑆) =
(Base‘({〈(Base‘ndx), (𝐾 ↑𝑚 𝐷)〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑅)
↾ ((𝐾
↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) | 
| 16 |   | psrbas.b | 
. . 3
⊢ 𝐵 = (Base‘𝑆) | 
| 17 | 16 | a1i 9 | 
. 2
⊢ (𝜑 → 𝐵 = (Base‘𝑆)) | 
| 18 |   | basfn 12736 | 
. . . . . . . 8
⊢ Base Fn
V | 
| 19 | 13 | elexd 2776 | 
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ V) | 
| 20 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 21 | 20 | funfni 5358 | 
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 22 | 18, 19, 21 | sylancr 414 | 
. . . . . . 7
⊢ (𝜑 → (Base‘𝑅) ∈ V) | 
| 23 | 2, 22 | eqeltrid 2283 | 
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ V) | 
| 24 |   | nn0ex 9255 | 
. . . . . . . . 9
⊢
ℕ0 ∈ V | 
| 25 |   | mapvalg 6717 | 
. . . . . . . . 9
⊢
((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑉) → (ℕ0
↑𝑚 𝐼) = {𝑝 ∣ 𝑝:𝐼⟶ℕ0}) | 
| 26 | 24, 12, 25 | sylancr 414 | 
. . . . . . . 8
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) = {𝑝 ∣ 𝑝:𝐼⟶ℕ0}) | 
| 27 | 24 | a1i 9 | 
. . . . . . . . 9
⊢ (𝜑 → ℕ0 ∈
V) | 
| 28 |   | mapex 6713 | 
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ ℕ0 ∈ V) →
{𝑝 ∣ 𝑝:𝐼⟶ℕ0} ∈
V) | 
| 29 | 12, 27, 28 | syl2anc 411 | 
. . . . . . . 8
⊢ (𝜑 → {𝑝 ∣ 𝑝:𝐼⟶ℕ0} ∈
V) | 
| 30 | 26, 29 | eqeltrd 2273 | 
. . . . . . 7
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) | 
| 31 | 6, 30 | rabexd 4178 | 
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ V) | 
| 32 |   | mapvalg 6717 | 
. . . . . 6
⊢ ((𝐾 ∈ V ∧ 𝐷 ∈ V) → (𝐾 ↑𝑚
𝐷) = {𝑝 ∣ 𝑝:𝐷⟶𝐾}) | 
| 33 | 23, 31, 32 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) = {𝑝 ∣ 𝑝:𝐷⟶𝐾}) | 
| 34 |   | mapex 6713 | 
. . . . . 6
⊢ ((𝐷 ∈ V ∧ 𝐾 ∈ V) → {𝑝 ∣ 𝑝:𝐷⟶𝐾} ∈ V) | 
| 35 | 31, 23, 34 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → {𝑝 ∣ 𝑝:𝐷⟶𝐾} ∈ V) | 
| 36 | 33, 35 | eqeltrd 2273 | 
. . . 4
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) ∈ V) | 
| 37 | 36, 36 | ofmresex 6194 | 
. . . 4
⊢ (𝜑 → (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷))) ∈ V) | 
| 38 |   | mpoexga 6270 | 
. . . . 5
⊢ (((𝐾 ↑𝑚
𝐷) ∈ V ∧ (𝐾 ↑𝑚
𝐷) ∈ V) → (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V) | 
| 39 | 36, 36, 38 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V) | 
| 40 |   | mpoexga 6270 | 
. . . . 5
⊢ ((𝐾 ∈ V ∧ (𝐾 ↑𝑚
𝐷) ∈ V) → (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔)) ∈ V) | 
| 41 | 23, 36, 40 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔)) ∈ V) | 
| 42 |   | topnfn 12915 | 
. . . . . . . 8
⊢ TopOpen
Fn V | 
| 43 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
TopOpen ∧ 𝑅 ∈ dom
TopOpen) → (TopOpen‘𝑅) ∈ V) | 
| 44 | 43 | funfni 5358 | 
. . . . . . . 8
⊢ ((TopOpen
Fn V ∧ 𝑅 ∈ V)
→ (TopOpen‘𝑅)
∈ V) | 
| 45 | 42, 19, 44 | sylancr 414 | 
. . . . . . 7
⊢ (𝜑 → (TopOpen‘𝑅) ∈ V) | 
| 46 |   | snexg 4217 | 
. . . . . . 7
⊢
((TopOpen‘𝑅)
∈ V → {(TopOpen‘𝑅)} ∈ V) | 
| 47 | 45, 46 | syl 14 | 
. . . . . 6
⊢ (𝜑 → {(TopOpen‘𝑅)} ∈ V) | 
| 48 |   | xpexg 4777 | 
. . . . . 6
⊢ ((𝐷 ∈ V ∧
{(TopOpen‘𝑅)} ∈
V) → (𝐷 ×
{(TopOpen‘𝑅)}) ∈
V) | 
| 49 | 31, 47, 48 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → (𝐷 × {(TopOpen‘𝑅)}) ∈ V) | 
| 50 |   | ptex 12935 | 
. . . . 5
⊢ ((𝐷 × {(TopOpen‘𝑅)}) ∈ V →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) ∈ V) | 
| 51 | 49, 50 | syl 14 | 
. . . 4
⊢ (𝜑 →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) ∈ V) | 
| 52 | 36, 37, 39, 13, 41, 51 | psrvalstrd 14222 | 
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) Struct 〈1,
9〉) | 
| 53 |   | basendxnn 12734 | 
. . . . 5
⊢
(Base‘ndx) ∈ ℕ | 
| 54 |   | opexg 4261 | 
. . . . 5
⊢
(((Base‘ndx) ∈ ℕ ∧ (𝐾 ↑𝑚 𝐷) ∈ V) →
〈(Base‘ndx), (𝐾
↑𝑚 𝐷)〉 ∈ V) | 
| 55 | 53, 36, 54 | sylancr 414 | 
. . . 4
⊢ (𝜑 → 〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉 ∈ V) | 
| 56 |   | tpid1g 3734 | 
. . . 4
⊢
(〈(Base‘ndx), (𝐾 ↑𝑚 𝐷)〉 ∈ V →
〈(Base‘ndx), (𝐾
↑𝑚 𝐷)〉 ∈ {〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉}) | 
| 57 |   | elun1 3330 | 
. . . 4
⊢
(〈(Base‘ndx), (𝐾 ↑𝑚 𝐷)〉 ∈
{〈(Base‘ndx), (𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} →
〈(Base‘ndx), (𝐾
↑𝑚 𝐷)〉 ∈ ({〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) | 
| 58 | 55, 56, 57 | 3syl 17 | 
. . 3
⊢ (𝜑 → 〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉 ∈ ({〈(Base‘ndx),
(𝐾
↑𝑚 𝐷)〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑅) ↾ ((𝐾 ↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) | 
| 59 | 52, 36, 58 | opelstrbas 12793 | 
. 2
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) =
(Base‘({〈(Base‘ndx), (𝐾 ↑𝑚 𝐷)〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑅)
↾ ((𝐾
↑𝑚 𝐷) × (𝐾 ↑𝑚 𝐷)))〉,
〈(.r‘ndx), (𝑔 ∈ (𝐾 ↑𝑚 𝐷), ℎ ∈ (𝐾 ↑𝑚 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) | 
| 60 | 15, 17, 59 | 3eqtr4d 2239 | 
1
⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) |