| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrelbas | GIF version | ||
| Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrbas.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrbas.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrbas.b | ⊢ 𝐵 = (Base‘𝑆) |
| psrelbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psrelbas | ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrelbas.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | psrbas.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | psrbas.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | psrbas.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 5 | psrbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | reldmpsr 14637 | . . . . . . 7 ⊢ Rel dom mPwSer | |
| 7 | fnpsr 14639 | . . . . . . . 8 ⊢ mPwSer Fn (V × V) | |
| 8 | fnrel 5419 | . . . . . . . 8 ⊢ ( mPwSer Fn (V × V) → Rel mPwSer ) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ Rel mPwSer |
| 10 | 6, 9, 2, 5 | relelbasov 13103 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 11 | 1, 10 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 12 | 11 | simpld 112 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 13 | 11 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 14 | 2, 3, 4, 5, 12, 13 | psrbasg 14646 | . . 3 ⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) |
| 15 | 1, 14 | eleqtrd 2308 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐾 ↑𝑚 𝐷)) |
| 16 | basfn 13099 | . . . . 5 ⊢ Base Fn V | |
| 17 | funfvex 5646 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 18 | 17 | funfni 5423 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 19 | 16, 13, 18 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 20 | 3, 19 | eqeltrid 2316 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) |
| 21 | fnmap 6810 | . . . . 5 ⊢ ↑𝑚 Fn (V × V) | |
| 22 | nn0ex 9383 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 23 | fnovex 6040 | . . . . 5 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 24 | 21, 22, 12, 23 | mp3an12i 1375 | . . . 4 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
| 25 | 4, 24 | rabexd 4229 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 26 | 20, 25 | elmapd 6817 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾 ↑𝑚 𝐷) ↔ 𝑋:𝐷⟶𝐾)) |
| 27 | 15, 26 | mpbid 147 | 1 ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 × cxp 4717 ◡ccnv 4718 “ cima 4722 Rel wrel 4724 Fn wfn 5313 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 ↑𝑚 cmap 6803 Fincfn 6895 ℕcn 9118 ℕ0cn0 9377 Basecbs 13040 mPwSer cmps 14633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-map 6805 df-ixp 6854 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-tset 13137 df-rest 13282 df-topn 13283 df-topgen 13301 df-pt 13302 df-psr 14635 |
| This theorem is referenced by: psrelbasfi 14648 psrelbasfun 14649 psraddcl 14652 psr0lid 14654 psrnegcl 14655 psrlinv 14656 mplelf 14669 |
| Copyright terms: Public domain | W3C validator |