![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > psrelbas | GIF version |
Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrbas.k | ⊢ 𝐾 = (Base‘𝑅) |
psrbas.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrbas.b | ⊢ 𝐵 = (Base‘𝑆) |
psrelbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
psrelbas | ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrelbas.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | psrbas.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
3 | psrbas.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | psrbas.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | psrbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
6 | reldmpsr 14162 | . . . . . . 7 ⊢ Rel dom mPwSer | |
7 | fnpsr 14164 | . . . . . . . 8 ⊢ mPwSer Fn (V × V) | |
8 | fnrel 5353 | . . . . . . . 8 ⊢ ( mPwSer Fn (V × V) → Rel mPwSer ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ Rel mPwSer |
10 | 6, 9, 2, 5 | relelbasov 12683 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
11 | 1, 10 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
12 | 11 | simpld 112 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
13 | 11 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
14 | 2, 3, 4, 5, 12, 13 | psrbasg 14170 | . . 3 ⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) |
15 | 1, 14 | eleqtrd 2272 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐾 ↑𝑚 𝐷)) |
16 | basfn 12679 | . . . . 5 ⊢ Base Fn V | |
17 | funfvex 5572 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
18 | 17 | funfni 5355 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
19 | 16, 13, 18 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
20 | 3, 19 | eqeltrid 2280 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) |
21 | fnmap 6711 | . . . . 5 ⊢ ↑𝑚 Fn (V × V) | |
22 | nn0ex 9249 | . . . . 5 ⊢ ℕ0 ∈ V | |
23 | fnovex 5952 | . . . . 5 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
24 | 21, 22, 12, 23 | mp3an12i 1352 | . . . 4 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
25 | 4, 24 | rabexd 4175 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
26 | 20, 25 | elmapd 6718 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾 ↑𝑚 𝐷) ↔ 𝑋:𝐷⟶𝐾)) |
27 | 15, 26 | mpbid 147 | 1 ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {crab 2476 Vcvv 2760 × cxp 4658 ◡ccnv 4659 “ cima 4663 Rel wrel 4665 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ↑𝑚 cmap 6704 Fincfn 6796 ℕcn 8984 ℕ0cn0 9243 Basecbs 12621 mPwSer cmps 14160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-map 6706 df-ixp 6755 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-tset 12717 df-rest 12855 df-topn 12856 df-topgen 12874 df-pt 12875 df-psr 14161 |
This theorem is referenced by: psrelbasfun 14172 psraddcl 14175 |
Copyright terms: Public domain | W3C validator |