ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psr1clfi GIF version

Theorem psr1clfi 14494
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrringfi.i (𝜑𝐼 ∈ Fin)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
psr1clfi (𝜑𝑈𝐵)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝜑,𝑥   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)

Proof of Theorem psr1clfi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 psrring.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2 eqid 2206 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.o . . . . . . . 8 1 = (1r𝑅)
42, 3ringidcl 13826 . . . . . . 7 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
51, 4syl 14 . . . . . 6 (𝜑1 ∈ (Base‘𝑅))
65adantr 276 . . . . 5 ((𝜑𝑥𝐷) → 1 ∈ (Base‘𝑅))
7 psr1cl.z . . . . . . . 8 0 = (0g𝑅)
82, 7ring0cl 13827 . . . . . . 7 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
91, 8syl 14 . . . . . 6 (𝜑0 ∈ (Base‘𝑅))
109adantr 276 . . . . 5 ((𝜑𝑥𝐷) → 0 ∈ (Base‘𝑅))
11 psrringfi.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
12 0z 9390 . . . . . . . . . . 11 0 ∈ ℤ
13 cnveq 4856 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑥𝑓 = 𝑥)
1413imaeq1d 5026 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑥 → (𝑓 “ ℕ) = (𝑥 “ ℕ))
1514eleq1d 2275 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑥 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝑥 “ ℕ) ∈ Fin))
16 psr1cl.d . . . . . . . . . . . . . . . . 17 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1715, 16elrab2 2933 . . . . . . . . . . . . . . . 16 (𝑥𝐷 ↔ (𝑥 ∈ (ℕ0𝑚 𝐼) ∧ (𝑥 “ ℕ) ∈ Fin))
1817simplbi 274 . . . . . . . . . . . . . . 15 (𝑥𝐷𝑥 ∈ (ℕ0𝑚 𝐼))
1918adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → 𝑥 ∈ (ℕ0𝑚 𝐼))
20 nn0ex 9308 . . . . . . . . . . . . . . . 16 0 ∈ V
2120a1i 9 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → ℕ0 ∈ V)
2211adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝐼 ∈ Fin)
2321, 22elmapd 6756 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → (𝑥 ∈ (ℕ0𝑚 𝐼) ↔ 𝑥:𝐼⟶ℕ0))
2419, 23mpbid 147 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
2524ffvelcdmda 5722 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
2625nn0zd 9500 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℤ)
27 zdceq 9455 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (𝑥𝑧) ∈ ℤ) → DECID 0 = (𝑥𝑧))
2812, 26, 27sylancr 414 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑧𝐼) → DECID 0 = (𝑥𝑧))
2928ralrimiva 2580 . . . . . . . . 9 ((𝜑𝑥𝐷) → ∀𝑧𝐼 DECID 0 = (𝑥𝑧))
30 dcfi 7090 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ ∀𝑧𝐼 DECID 0 = (𝑥𝑧)) → DECID𝑧𝐼 0 = (𝑥𝑧))
3111, 29, 30syl2an2r 595 . . . . . . . 8 ((𝜑𝑥𝐷) → DECID𝑧𝐼 0 = (𝑥𝑧))
32 0nn0 9317 . . . . . . . . . . 11 0 ∈ ℕ0
3332rgenw 2562 . . . . . . . . . 10 𝑧𝐼 0 ∈ ℕ0
34 mpteqb 5677 . . . . . . . . . 10 (∀𝑧𝐼 0 ∈ ℕ0 → ((𝑧𝐼 ↦ 0) = (𝑧𝐼 ↦ (𝑥𝑧)) ↔ ∀𝑧𝐼 0 = (𝑥𝑧)))
3533, 34ax-mp 5 . . . . . . . . 9 ((𝑧𝐼 ↦ 0) = (𝑧𝐼 ↦ (𝑥𝑧)) ↔ ∀𝑧𝐼 0 = (𝑥𝑧))
3635dcbii 842 . . . . . . . 8 (DECID (𝑧𝐼 ↦ 0) = (𝑧𝐼 ↦ (𝑥𝑧)) ↔ DECID𝑧𝐼 0 = (𝑥𝑧))
3731, 36sylibr 134 . . . . . . 7 ((𝜑𝑥𝐷) → DECID (𝑧𝐼 ↦ 0) = (𝑧𝐼 ↦ (𝑥𝑧)))
38 eqcom 2208 . . . . . . . 8 ((𝑧𝐼 ↦ 0) = (𝑧𝐼 ↦ (𝑥𝑧)) ↔ (𝑧𝐼 ↦ (𝑥𝑧)) = (𝑧𝐼 ↦ 0))
3938dcbii 842 . . . . . . 7 (DECID (𝑧𝐼 ↦ 0) = (𝑧𝐼 ↦ (𝑥𝑧)) ↔ DECID (𝑧𝐼 ↦ (𝑥𝑧)) = (𝑧𝐼 ↦ 0))
4037, 39sylib 122 . . . . . 6 ((𝜑𝑥𝐷) → DECID (𝑧𝐼 ↦ (𝑥𝑧)) = (𝑧𝐼 ↦ 0))
4124feqmptd 5639 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
42 fconstmpt 4726 . . . . . . . . 9 (𝐼 × {0}) = (𝑧𝐼 ↦ 0)
4342a1i 9 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐼 × {0}) = (𝑧𝐼 ↦ 0))
4441, 43eqeq12d 2221 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥 = (𝐼 × {0}) ↔ (𝑧𝐼 ↦ (𝑥𝑧)) = (𝑧𝐼 ↦ 0)))
4544dcbid 840 . . . . . 6 ((𝜑𝑥𝐷) → (DECID 𝑥 = (𝐼 × {0}) ↔ DECID (𝑧𝐼 ↦ (𝑥𝑧)) = (𝑧𝐼 ↦ 0)))
4640, 45mpbird 167 . . . . 5 ((𝜑𝑥𝐷) → DECID 𝑥 = (𝐼 × {0}))
476, 10, 46ifcldcd 3609 . . . 4 ((𝜑𝑥𝐷) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) ∈ (Base‘𝑅))
48 psr1cl.u . . . 4 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
4947, 48fmptd 5741 . . 3 (𝜑𝑈:𝐷⟶(Base‘𝑅))
50 basfn 12934 . . . . 5 Base Fn V
511elexd 2786 . . . . 5 (𝜑𝑅 ∈ V)
52 funfvex 5600 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
5352funfni 5381 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
5450, 51, 53sylancr 414 . . . 4 (𝜑 → (Base‘𝑅) ∈ V)
55 fnmap 6749 . . . . . 6 𝑚 Fn (V × V)
5611elexd 2786 . . . . . 6 (𝜑𝐼 ∈ V)
57 fnovex 5984 . . . . . 6 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0𝑚 𝐼) ∈ V)
5855, 20, 56, 57mp3an12i 1354 . . . . 5 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
5916, 58rabexd 4193 . . . 4 (𝜑𝐷 ∈ V)
6054, 59elmapd 6756 . . 3 (𝜑 → (𝑈 ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ 𝑈:𝐷⟶(Base‘𝑅)))
6149, 60mpbird 167 . 2 (𝜑𝑈 ∈ ((Base‘𝑅) ↑𝑚 𝐷))
62 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
63 psr1cl.b . . 3 𝐵 = (Base‘𝑆)
6462, 2, 16, 63, 11, 1psrbasg 14480 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑𝑚 𝐷))
6561, 64eleqtrrd 2286 1 (𝜑𝑈𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  {crab 2489  Vcvv 2773  ifcif 3572  {csn 3634  cmpt 4109   × cxp 4677  ccnv 4678  cima 4682   Fn wfn 5271  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  Fincfn 6834  0cc0 7932  cn 9043  0cn0 9302  cz 9379  Basecbs 12876  0gc0g 13132  1rcur 13765  Ringcrg 13802   mPwSer cmps 14467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-er 6627  df-map 6744  df-ixp 6793  df-en 6835  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-tset 12972  df-rest 13117  df-topn 13118  df-0g 13134  df-topgen 13136  df-pt 13137  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-mgp 13727  df-ur 13766  df-ring 13804  df-psr 14469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator