| Step | Hyp | Ref
| Expression |
| 1 | | psrring.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | psr1cl.o |
. . . . . . . 8
⊢ 1 =
(1r‘𝑅) |
| 4 | 2, 3 | ringidcl 13652 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
| 5 | 1, 4 | syl 14 |
. . . . . 6
⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
| 6 | 5 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 1 ∈ (Base‘𝑅)) |
| 7 | | psr1cl.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
| 8 | 2, 7 | ring0cl 13653 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
| 9 | 1, 8 | syl 14 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 10 | 9 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 0 ∈ (Base‘𝑅)) |
| 11 | | psrringfi.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 12 | | 0z 9354 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
| 13 | | cnveq 4841 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑥 → ◡𝑓 = ◡𝑥) |
| 14 | 13 | imaeq1d 5009 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑥 → (◡𝑓 “ ℕ) = (◡𝑥 “ ℕ)) |
| 15 | 14 | eleq1d 2265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑥 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝑥 “ ℕ) ∈
Fin)) |
| 16 | | psr1cl.d |
. . . . . . . . . . . . . . . . 17
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 17 | 15, 16 | elrab2 2923 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ (ℕ0
↑𝑚 𝐼) ∧ (◡𝑥 “ ℕ) ∈
Fin)) |
| 18 | 17 | simplbi 274 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ (ℕ0
↑𝑚 𝐼)) |
| 19 | 18 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ (ℕ0
↑𝑚 𝐼)) |
| 20 | | nn0ex 9272 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ∈ V |
| 21 | 20 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ℕ0 ∈
V) |
| 22 | 11 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐼 ∈ Fin) |
| 23 | 21, 22 | elmapd 6730 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ (ℕ0
↑𝑚 𝐼) ↔ 𝑥:𝐼⟶ℕ0)) |
| 24 | 19, 23 | mpbid 147 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐼⟶ℕ0) |
| 25 | 24 | ffvelcdmda 5700 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑥‘𝑧) ∈
ℕ0) |
| 26 | 25 | nn0zd 9463 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑥‘𝑧) ∈ ℤ) |
| 27 | | zdceq 9418 |
. . . . . . . . . . 11
⊢ ((0
∈ ℤ ∧ (𝑥‘𝑧) ∈ ℤ) → DECID
0 = (𝑥‘𝑧)) |
| 28 | 12, 26, 27 | sylancr 414 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → DECID 0 = (𝑥‘𝑧)) |
| 29 | 28 | ralrimiva 2570 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∀𝑧 ∈ 𝐼 DECID 0 = (𝑥‘𝑧)) |
| 30 | | dcfi 7056 |
. . . . . . . . 9
⊢ ((𝐼 ∈ Fin ∧ ∀𝑧 ∈ 𝐼 DECID 0 = (𝑥‘𝑧)) → DECID ∀𝑧 ∈ 𝐼 0 = (𝑥‘𝑧)) |
| 31 | 11, 29, 30 | syl2an2r 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → DECID ∀𝑧 ∈ 𝐼 0 = (𝑥‘𝑧)) |
| 32 | | 0nn0 9281 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
| 33 | 32 | rgenw 2552 |
. . . . . . . . . 10
⊢
∀𝑧 ∈
𝐼 0 ∈
ℕ0 |
| 34 | | mpteqb 5655 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝐼 0 ∈
ℕ0 → ((𝑧 ∈ 𝐼 ↦ 0) = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 0 = (𝑥‘𝑧))) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐼 ↦ 0) = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 0 = (𝑥‘𝑧)) |
| 36 | 35 | dcbii 841 |
. . . . . . . 8
⊢
(DECID (𝑧 ∈ 𝐼 ↦ 0) = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) ↔ DECID ∀𝑧 ∈ 𝐼 0 = (𝑥‘𝑧)) |
| 37 | 31, 36 | sylibr 134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → DECID (𝑧 ∈ 𝐼 ↦ 0) = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧))) |
| 38 | | eqcom 2198 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐼 ↦ 0) = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) ↔ (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) = (𝑧 ∈ 𝐼 ↦ 0)) |
| 39 | 38 | dcbii 841 |
. . . . . . 7
⊢
(DECID (𝑧 ∈ 𝐼 ↦ 0) = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) ↔ DECID (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) = (𝑧 ∈ 𝐼 ↦ 0)) |
| 40 | 37, 39 | sylib 122 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → DECID (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) = (𝑧 ∈ 𝐼 ↦ 0)) |
| 41 | 24 | feqmptd 5617 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧))) |
| 42 | | fconstmpt 4711 |
. . . . . . . . 9
⊢ (𝐼 × {0}) = (𝑧 ∈ 𝐼 ↦ 0) |
| 43 | 42 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐼 × {0}) = (𝑧 ∈ 𝐼 ↦ 0)) |
| 44 | 41, 43 | eqeq12d 2211 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 = (𝐼 × {0}) ↔ (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) = (𝑧 ∈ 𝐼 ↦ 0))) |
| 45 | 44 | dcbid 839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (DECID 𝑥 = (𝐼 × {0}) ↔ DECID
(𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧)) = (𝑧 ∈ 𝐼 ↦ 0))) |
| 46 | 40, 45 | mpbird 167 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → DECID 𝑥 = (𝐼 × {0})) |
| 47 | 6, 10, 46 | ifcldcd 3598 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) ∈ (Base‘𝑅)) |
| 48 | | psr1cl.u |
. . . 4
⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) |
| 49 | 47, 48 | fmptd 5719 |
. . 3
⊢ (𝜑 → 𝑈:𝐷⟶(Base‘𝑅)) |
| 50 | | basfn 12761 |
. . . . 5
⊢ Base Fn
V |
| 51 | 1 | elexd 2776 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ V) |
| 52 | | funfvex 5578 |
. . . . . 6
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 53 | 52 | funfni 5361 |
. . . . 5
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 54 | 50, 51, 53 | sylancr 414 |
. . . 4
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 55 | | fnmap 6723 |
. . . . . 6
⊢
↑𝑚 Fn (V × V) |
| 56 | 11 | elexd 2776 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ V) |
| 57 | | fnovex 5958 |
. . . . . 6
⊢ ((
↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V
∧ 𝐼 ∈ V) →
(ℕ0 ↑𝑚 𝐼) ∈ V) |
| 58 | 55, 20, 56, 57 | mp3an12i 1352 |
. . . . 5
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) |
| 59 | 16, 58 | rabexd 4179 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
| 60 | 54, 59 | elmapd 6730 |
. . 3
⊢ (𝜑 → (𝑈 ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ 𝑈:𝐷⟶(Base‘𝑅))) |
| 61 | 49, 60 | mpbird 167 |
. 2
⊢ (𝜑 → 𝑈 ∈ ((Base‘𝑅) ↑𝑚 𝐷)) |
| 62 | | psrring.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 63 | | psr1cl.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
| 64 | 62, 2, 16, 63, 11, 1 | psrbasg 14303 |
. 2
⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑𝑚 𝐷)) |
| 65 | 61, 64 | eleqtrrd 2276 |
1
⊢ (𝜑 → 𝑈 ∈ 𝐵) |