| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psr0lid | GIF version | ||
| Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| psr0cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psr0cl.o | ⊢ 0 = (0g‘𝑅) |
| psr0cl.b | ⊢ 𝐵 = (Base‘𝑆) |
| psr0lid.p | ⊢ + = (+g‘𝑆) |
| psr0lid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psr0lid | ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | psr0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | eqid 2229 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | psr0lid.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 5 | psrgrp.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 6 | psrgrp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 7 | psr0cl.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 8 | psr0cl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | 1, 5, 6, 7, 8, 2 | psr0cl 14653 | . . 3 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) |
| 10 | psr0lid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 1, 2, 3, 4, 9, 10 | psradd 14651 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = ((𝐷 × { 0 }) ∘𝑓 (+g‘𝑅)𝑋)) |
| 12 | fnmap 6810 | . . . . 5 ⊢ ↑𝑚 Fn (V × V) | |
| 13 | nn0ex 9383 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 14 | 5 | elexd 2813 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 15 | fnovex 6040 | . . . . 5 ⊢ (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0 ↑𝑚 𝐼) ∈ V) | |
| 16 | 12, 13, 14, 15 | mp3an12i 1375 | . . . 4 ⊢ (𝜑 → (ℕ0 ↑𝑚 𝐼) ∈ V) |
| 17 | 7, 16 | rabexd 4229 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 18 | eqid 2229 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | 1, 18, 7, 2, 10 | psrelbas 14647 | . . 3 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 20 | 18, 8 | grpidcl 13570 | . . . 4 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
| 21 | 6, 20 | syl 14 | . . 3 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 22 | 18, 3, 8 | grplid 13572 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
| 23 | 6, 22 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
| 24 | 17, 19, 21, 23 | caofid0l 6251 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) ∘𝑓 (+g‘𝑅)𝑋) = 𝑋) |
| 25 | 11, 24 | eqtrd 2262 | 1 ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 {csn 3666 × cxp 4717 ◡ccnv 4718 “ cima 4722 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 ∘𝑓 cof 6222 ↑𝑚 cmap 6803 Fincfn 6895 ℕcn 9118 ℕ0cn0 9377 Basecbs 13040 +gcplusg 13118 0gc0g 13297 Grpcgrp 13541 mPwSer cmps 14633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-map 6805 df-ixp 6854 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-tset 13137 df-rest 13282 df-topn 13283 df-0g 13299 df-topgen 13301 df-pt 13302 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-psr 14635 |
| This theorem is referenced by: psr0 14658 |
| Copyright terms: Public domain | W3C validator |