ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psr0lid GIF version

Theorem psr0lid 14488
Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psr0cl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr0cl.o 0 = (0g𝑅)
psr0cl.b 𝐵 = (Base‘𝑆)
psr0lid.p + = (+g𝑆)
psr0lid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psr0lid (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem psr0lid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psr0cl.b . . 3 𝐵 = (Base‘𝑆)
3 eqid 2206 . . 3 (+g𝑅) = (+g𝑅)
4 psr0lid.p . . 3 + = (+g𝑆)
5 psrgrp.i . . . 4 (𝜑𝐼𝑉)
6 psrgrp.r . . . 4 (𝜑𝑅 ∈ Grp)
7 psr0cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
8 psr0cl.o . . . 4 0 = (0g𝑅)
91, 5, 6, 7, 8, 2psr0cl 14487 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
10 psr0lid.x . . 3 (𝜑𝑋𝐵)
111, 2, 3, 4, 9, 10psradd 14485 . 2 (𝜑 → ((𝐷 × { 0 }) + 𝑋) = ((𝐷 × { 0 }) ∘𝑓 (+g𝑅)𝑋))
12 fnmap 6749 . . . . 5 𝑚 Fn (V × V)
13 nn0ex 9308 . . . . 5 0 ∈ V
145elexd 2786 . . . . 5 (𝜑𝐼 ∈ V)
15 fnovex 5984 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0𝑚 𝐼) ∈ V)
1612, 13, 14, 15mp3an12i 1354 . . . 4 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
177, 16rabexd 4193 . . 3 (𝜑𝐷 ∈ V)
18 eqid 2206 . . . 4 (Base‘𝑅) = (Base‘𝑅)
191, 18, 7, 2, 10psrelbas 14481 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
2018, 8grpidcl 13405 . . . 4 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
216, 20syl 14 . . 3 (𝜑0 ∈ (Base‘𝑅))
2218, 3, 8grplid 13407 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
236, 22sylan 283 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
2417, 19, 21, 23caofid0l 6192 . 2 (𝜑 → ((𝐷 × { 0 }) ∘𝑓 (+g𝑅)𝑋) = 𝑋)
2511, 24eqtrd 2239 1 (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  {csn 3634   × cxp 4677  ccnv 4678  cima 4682   Fn wfn 5271  cfv 5276  (class class class)co 5951  𝑓 cof 6163  𝑚 cmap 6742  Fincfn 6834  cn 9043  0cn0 9302  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Grpcgrp 13376   mPwSer cmps 14467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-tset 12972  df-rest 13117  df-topn 13118  df-0g 13134  df-topgen 13136  df-pt 13137  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-psr 14469
This theorem is referenced by:  psr0  14492
  Copyright terms: Public domain W3C validator