ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrnegcl GIF version

Theorem psrnegcl 14655
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psrnegcl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrnegcl.i 𝑁 = (invg𝑅)
psrnegcl.b 𝐵 = (Base‘𝑆)
psrnegcl.z (𝜑𝑋𝐵)
Assertion
Ref Expression
psrnegcl (𝜑 → (𝑁𝑋) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑁(𝑓)   𝑉(𝑓)   𝑋(𝑓)

Proof of Theorem psrnegcl
StepHypRef Expression
1 eqid 2229 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 psrnegcl.i . . . . . 6 𝑁 = (invg𝑅)
3 psrgrp.r . . . . . 6 (𝜑𝑅 ∈ Grp)
41, 2, 3grpinvf1o 13611 . . . . 5 (𝜑𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
5 f1of 5574 . . . . 5 (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅))
64, 5syl 14 . . . 4 (𝜑𝑁:(Base‘𝑅)⟶(Base‘𝑅))
7 psrgrp.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
8 psrnegcl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 psrnegcl.b . . . . 5 𝐵 = (Base‘𝑆)
10 psrnegcl.z . . . . 5 (𝜑𝑋𝐵)
117, 1, 8, 9, 10psrelbas 14647 . . . 4 (𝜑𝑋:𝐷⟶(Base‘𝑅))
12 fco 5491 . . . 4 ((𝑁:(Base‘𝑅)⟶(Base‘𝑅) ∧ 𝑋:𝐷⟶(Base‘𝑅)) → (𝑁𝑋):𝐷⟶(Base‘𝑅))
136, 11, 12syl2anc 411 . . 3 (𝜑 → (𝑁𝑋):𝐷⟶(Base‘𝑅))
14 basfn 13099 . . . . 5 Base Fn V
153elexd 2813 . . . . 5 (𝜑𝑅 ∈ V)
16 funfvex 5646 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1716funfni 5423 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1814, 15, 17sylancr 414 . . . 4 (𝜑 → (Base‘𝑅) ∈ V)
19 fnmap 6810 . . . . . 6 𝑚 Fn (V × V)
20 nn0ex 9383 . . . . . 6 0 ∈ V
21 psrgrp.i . . . . . . 7 (𝜑𝐼𝑉)
2221elexd 2813 . . . . . 6 (𝜑𝐼 ∈ V)
23 fnovex 6040 . . . . . 6 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0𝑚 𝐼) ∈ V)
2419, 20, 22, 23mp3an12i 1375 . . . . 5 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
258, 24rabexd 4229 . . . 4 (𝜑𝐷 ∈ V)
2618, 25elmapd 6817 . . 3 (𝜑 → ((𝑁𝑋) ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ (𝑁𝑋):𝐷⟶(Base‘𝑅)))
2713, 26mpbird 167 . 2 (𝜑 → (𝑁𝑋) ∈ ((Base‘𝑅) ↑𝑚 𝐷))
287, 1, 8, 9, 21, 3psrbasg 14646 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑𝑚 𝐷))
2927, 28eleqtrrd 2309 1 (𝜑 → (𝑁𝑋) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {crab 2512  Vcvv 2799   × cxp 4717  ccnv 4718  cima 4722  ccom 4723   Fn wfn 5313  wf 5314  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6007  𝑚 cmap 6803  Fincfn 6895  cn 9118  0cn0 9377  Basecbs 13040  Grpcgrp 13541  invgcminusg 13542   mPwSer cmps 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-tset 13137  df-rest 13282  df-topn 13283  df-0g 13299  df-topgen 13301  df-pt 13302  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-psr 14635
This theorem is referenced by:  psrlinv  14656  psrneg  14659  mplsubgfileminv  14672
  Copyright terms: Public domain W3C validator