ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodap0f GIF version

Theorem fprodap0f 11782
Description: A finite product of terms apart from zero is apart from zero. A version of fprodap0 11767 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
Hypotheses
Ref Expression
fprodn0f.kph 𝑘𝜑
fprodn0f.a (𝜑𝐴 ∈ Fin)
fprodn0f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodap0f.bap0 ((𝜑𝑘𝐴) → 𝐵 # 0)
Assertion
Ref Expression
fprodap0f (𝜑 → ∏𝑘𝐴 𝐵 # 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodap0f
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11699 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21breq1d 4040 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ ∅ 𝐵 # 0))
3 prodeq1 11699 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
43breq1d 4040 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘𝑦 𝐵 # 0))
5 prodeq1 11699 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
65breq1d 4040 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0))
7 prodeq1 11699 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
87breq1d 4040 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘𝐴 𝐵 # 0))
9 prod0 11731 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
10 1ap0 8611 . . . 4 1 # 0
119, 10eqbrtri 4051 . . 3 𝑘 ∈ ∅ 𝐵 # 0
1211a1i 9 . 2 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 # 0)
13 fprodn0f.kph . . . . . . . . 9 𝑘𝜑
14 nfv 1539 . . . . . . . . 9 𝑘 𝑦 ∈ Fin
1513, 14nfan 1576 . . . . . . . 8 𝑘(𝜑𝑦 ∈ Fin)
16 nfv 1539 . . . . . . . 8 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
1715, 16nfan 1576 . . . . . . 7 𝑘((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
18 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
19 simplll 533 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
20 simplrl 535 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
21 simpr 110 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
2220, 21sseldd 3181 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
23 fprodn0f.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2419, 22, 23syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
2517, 18, 24fprodclf 11781 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
2625adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘𝑦 𝐵 ∈ ℂ)
27 simprr 531 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2827eldifad 3165 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
2923ex 115 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝐵 ∈ ℂ))
3013, 29ralrimi 2565 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
3130ad2antrr 488 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
32 rspcsbela 3141 . . . . . . 7 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℂ) → 𝑧 / 𝑘𝐵 ∈ ℂ)
3328, 31, 32syl2anc 411 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
3433adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → 𝑧 / 𝑘𝐵 ∈ ℂ)
35 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘𝑦 𝐵 # 0)
36 fprodap0f.bap0 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 # 0)
3736ex 115 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝐵 # 0))
3813, 37ralrimi 2565 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐵 # 0)
3938ad2antrr 488 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 # 0)
40 nfcsb1v 3114 . . . . . . . . 9 𝑘𝑧 / 𝑘𝐵
41 nfcv 2336 . . . . . . . . 9 𝑘 #
42 nfcv 2336 . . . . . . . . 9 𝑘0
4340, 41, 42nfbr 4076 . . . . . . . 8 𝑘𝑧 / 𝑘𝐵 # 0
44 csbeq1a 3090 . . . . . . . . 9 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4544breq1d 4040 . . . . . . . 8 (𝑘 = 𝑧 → (𝐵 # 0 ↔ 𝑧 / 𝑘𝐵 # 0))
4643, 45rspc 2859 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 𝐵 # 0 → 𝑧 / 𝑘𝐵 # 0))
4728, 39, 46sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 # 0)
4847adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → 𝑧 / 𝑘𝐵 # 0)
4926, 34, 35, 48mulap0d 8679 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0)
5027eldifbd 3166 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
5117, 40, 18, 27, 50, 24, 44, 33fprodsplitsn 11779 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
5251breq1d 4040 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0))
5352adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0))
5449, 53mpbird 167 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0)
5554ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 # 0 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0))
56 fprodn0f.a . 2 (𝜑𝐴 ∈ Fin)
572, 4, 6, 8, 12, 55, 56findcard2sd 6950 1 (𝜑 → ∏𝑘𝐴 𝐵 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wnf 1471  wcel 2164  wral 2472  csb 3081  cdif 3151  cun 3152  wss 3154  c0 3447  {csn 3619   class class class wbr 4030  (class class class)co 5919  Fincfn 6796  cc 7872  0cc0 7874  1c1 7875   · cmul 7879   # cap 8602  cprod 11696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator