ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodap0f GIF version

Theorem fprodap0f 11818
Description: A finite product of terms apart from zero is apart from zero. A version of fprodap0 11803 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
Hypotheses
Ref Expression
fprodn0f.kph 𝑘𝜑
fprodn0f.a (𝜑𝐴 ∈ Fin)
fprodn0f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodap0f.bap0 ((𝜑𝑘𝐴) → 𝐵 # 0)
Assertion
Ref Expression
fprodap0f (𝜑 → ∏𝑘𝐴 𝐵 # 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodap0f
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11735 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21breq1d 4044 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ ∅ 𝐵 # 0))
3 prodeq1 11735 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
43breq1d 4044 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘𝑦 𝐵 # 0))
5 prodeq1 11735 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
65breq1d 4044 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0))
7 prodeq1 11735 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
87breq1d 4044 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 # 0 ↔ ∏𝑘𝐴 𝐵 # 0))
9 prod0 11767 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
10 1ap0 8634 . . . 4 1 # 0
119, 10eqbrtri 4055 . . 3 𝑘 ∈ ∅ 𝐵 # 0
1211a1i 9 . 2 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 # 0)
13 fprodn0f.kph . . . . . . . . 9 𝑘𝜑
14 nfv 1542 . . . . . . . . 9 𝑘 𝑦 ∈ Fin
1513, 14nfan 1579 . . . . . . . 8 𝑘(𝜑𝑦 ∈ Fin)
16 nfv 1542 . . . . . . . 8 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
1715, 16nfan 1579 . . . . . . 7 𝑘((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
18 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
19 simplll 533 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
20 simplrl 535 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
21 simpr 110 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
2220, 21sseldd 3185 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
23 fprodn0f.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2419, 22, 23syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
2517, 18, 24fprodclf 11817 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℂ)
2625adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘𝑦 𝐵 ∈ ℂ)
27 simprr 531 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2827eldifad 3168 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
2923ex 115 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝐵 ∈ ℂ))
3013, 29ralrimi 2568 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
3130ad2antrr 488 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
32 rspcsbela 3144 . . . . . . 7 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℂ) → 𝑧 / 𝑘𝐵 ∈ ℂ)
3328, 31, 32syl2anc 411 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
3433adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → 𝑧 / 𝑘𝐵 ∈ ℂ)
35 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘𝑦 𝐵 # 0)
36 fprodap0f.bap0 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 # 0)
3736ex 115 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝐵 # 0))
3813, 37ralrimi 2568 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐵 # 0)
3938ad2antrr 488 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 # 0)
40 nfcsb1v 3117 . . . . . . . . 9 𝑘𝑧 / 𝑘𝐵
41 nfcv 2339 . . . . . . . . 9 𝑘 #
42 nfcv 2339 . . . . . . . . 9 𝑘0
4340, 41, 42nfbr 4080 . . . . . . . 8 𝑘𝑧 / 𝑘𝐵 # 0
44 csbeq1a 3093 . . . . . . . . 9 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4544breq1d 4044 . . . . . . . 8 (𝑘 = 𝑧 → (𝐵 # 0 ↔ 𝑧 / 𝑘𝐵 # 0))
4643, 45rspc 2862 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 𝐵 # 0 → 𝑧 / 𝑘𝐵 # 0))
4728, 39, 46sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 # 0)
4847adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → 𝑧 / 𝑘𝐵 # 0)
4926, 34, 35, 48mulap0d 8702 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0)
5027eldifbd 3169 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
5117, 40, 18, 27, 50, 24, 44, 33fprodsplitsn 11815 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
5251breq1d 4044 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0))
5352adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) # 0))
5449, 53mpbird 167 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 # 0) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0)
5554ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 # 0 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 # 0))
56 fprodn0f.a . 2 (𝜑𝐴 ∈ Fin)
572, 4, 6, 8, 12, 55, 56findcard2sd 6962 1 (𝜑 → ∏𝑘𝐴 𝐵 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wnf 1474  wcel 2167  wral 2475  csb 3084  cdif 3154  cun 3155  wss 3157  c0 3451  {csn 3623   class class class wbr 4034  (class class class)co 5925  Fincfn 6808  cc 7894  0cc0 7896  1c1 7897   · cmul 7901   # cap 8625  cprod 11732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator