| Step | Hyp | Ref
 | Expression | 
| 1 |   | prodeq1 11718 | 
. . 3
⊢ (𝑤 = ∅ → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | 
| 2 |   | prodeq1 11718 | 
. . 3
⊢ (𝑤 = ∅ → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶) | 
| 3 | 1, 2 | breq12d 4046 | 
. 2
⊢ (𝑤 = ∅ → (∏𝑘 ∈ 𝑤 𝐵 ≤ ∏𝑘 ∈ 𝑤 𝐶 ↔ ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)) | 
| 4 |   | prodeq1 11718 | 
. . 3
⊢ (𝑤 = 𝑦 → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ 𝑦 𝐵) | 
| 5 |   | prodeq1 11718 | 
. . 3
⊢ (𝑤 = 𝑦 → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ 𝑦 𝐶) | 
| 6 | 4, 5 | breq12d 4046 | 
. 2
⊢ (𝑤 = 𝑦 → (∏𝑘 ∈ 𝑤 𝐵 ≤ ∏𝑘 ∈ 𝑤 𝐶 ↔ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶)) | 
| 7 |   | prodeq1 11718 | 
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) | 
| 8 |   | prodeq1 11718 | 
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) | 
| 9 | 7, 8 | breq12d 4046 | 
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘 ∈ 𝑤 𝐵 ≤ ∏𝑘 ∈ 𝑤 𝐶 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)) | 
| 10 |   | prodeq1 11718 | 
. . 3
⊢ (𝑤 = 𝐴 → ∏𝑘 ∈ 𝑤 𝐵 = ∏𝑘 ∈ 𝐴 𝐵) | 
| 11 |   | prodeq1 11718 | 
. . 3
⊢ (𝑤 = 𝐴 → ∏𝑘 ∈ 𝑤 𝐶 = ∏𝑘 ∈ 𝐴 𝐶) | 
| 12 | 10, 11 | breq12d 4046 | 
. 2
⊢ (𝑤 = 𝐴 → (∏𝑘 ∈ 𝑤 𝐵 ≤ ∏𝑘 ∈ 𝑤 𝐶 ↔ ∏𝑘 ∈ 𝐴 𝐵 ≤ ∏𝑘 ∈ 𝐴 𝐶)) | 
| 13 |   | prod0 11750 | 
. . . 4
⊢
∏𝑘 ∈
∅ 𝐵 =
1 | 
| 14 |   | prod0 11750 | 
. . . 4
⊢
∏𝑘 ∈
∅ 𝐶 =
1 | 
| 15 | 13, 14 | eqtr4i 2220 | 
. . 3
⊢
∏𝑘 ∈
∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶 | 
| 16 |   | 1re 8025 | 
. . . . 5
⊢ 1 ∈
ℝ | 
| 17 | 13, 16 | eqeltri 2269 | 
. . . 4
⊢
∏𝑘 ∈
∅ 𝐵 ∈
ℝ | 
| 18 | 17 | eqlei 8120 | 
. . 3
⊢
(∏𝑘 ∈
∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶) | 
| 19 | 15, 18 | mp1i 10 | 
. 2
⊢ (𝜑 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶) | 
| 20 |   | fprodle.kph | 
. . . . . . . . 9
⊢
Ⅎ𝑘𝜑 | 
| 21 |   | nfv 1542 | 
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑦 ∈ Fin | 
| 22 | 20, 21 | nfan 1579 | 
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ Fin) | 
| 23 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑘(𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 24 | 22, 23 | nfan 1579 | 
. . . . . . 7
⊢
Ⅎ𝑘((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) | 
| 25 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) | 
| 26 |   | simplll 533 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝜑) | 
| 27 |   | simplrl 535 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑦 ⊆ 𝐴) | 
| 28 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝑦) | 
| 29 | 27, 28 | sseldd 3184 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) | 
| 30 |   | fprodle.b | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | 
| 31 | 26, 29, 30 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℝ) | 
| 32 | 24, 25, 31 | fprodreclf 11779 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℝ) | 
| 33 | 32 | adantr 276 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℝ) | 
| 34 |   | fprodle.c | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) | 
| 35 | 26, 29, 34 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℝ) | 
| 36 | 24, 25, 35 | fprodreclf 11779 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐶 ∈ ℝ) | 
| 37 | 36 | adantr 276 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → ∏𝑘 ∈ 𝑦 𝐶 ∈ ℝ) | 
| 38 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝜑) | 
| 39 |   | simprr 531 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 40 | 39 | eldifad 3168 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) | 
| 41 | 30 | ex 115 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ ℝ)) | 
| 42 | 20, 41 | ralrimi 2568 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℝ) | 
| 43 |   | nfv 1542 | 
. . . . . . . . . 10
⊢
Ⅎ𝑧 𝐵 ∈ ℝ | 
| 44 |   | nfcsb1v 3117 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 | 
| 45 | 44 | nfel1 2350 | 
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ | 
| 46 |   | csbeq1a 3093 | 
. . . . . . . . . . 11
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) | 
| 47 | 46 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑘 = 𝑧 → (𝐵 ∈ ℝ ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ)) | 
| 48 | 43, 45, 47 | cbvral 2725 | 
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ ℝ ↔ ∀𝑧 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ) | 
| 49 | 42, 48 | sylib 122 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ) | 
| 50 |   | rsp 2544 | 
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 ⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ → (𝑧 ∈ 𝐴 → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ)) | 
| 51 | 49, 50 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝐴 → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ)) | 
| 52 | 38, 40, 51 | sylc 62 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ) | 
| 53 | 52 | adantr 276 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℝ) | 
| 54 | 34 | ex 115 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℝ)) | 
| 55 | 20, 54 | ralrimi 2568 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℝ) | 
| 56 |   | nfv 1542 | 
. . . . . . . . . 10
⊢
Ⅎ𝑧 𝐶 ∈ ℝ | 
| 57 |   | nfcsb1v 3117 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 | 
| 58 | 57 | nfel1 2350 | 
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ | 
| 59 |   | csbeq1a 3093 | 
. . . . . . . . . . 11
⊢ (𝑘 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑘⦌𝐶) | 
| 60 | 59 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑘 = 𝑧 → (𝐶 ∈ ℝ ↔ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ)) | 
| 61 | 56, 58, 60 | cbvral 2725 | 
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝐴 𝐶 ∈ ℝ ↔ ∀𝑧 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ) | 
| 62 | 55, 61 | sylib 122 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ) | 
| 63 |   | rsp 2544 | 
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ → (𝑧 ∈ 𝐴 → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ)) | 
| 64 | 62, 63 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝐴 → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ)) | 
| 65 | 38, 40, 64 | sylc 62 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ) | 
| 66 | 65 | adantr 276 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℝ) | 
| 67 |   | fprodle.0l3b | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | 
| 68 | 26, 29, 67 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 0 ≤ 𝐵) | 
| 69 | 24, 25, 31, 68 | fprodge0 11802 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 0 ≤ ∏𝑘 ∈ 𝑦 𝐵) | 
| 70 | 69 | adantr 276 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → 0 ≤ ∏𝑘 ∈ 𝑦 𝐵) | 
| 71 | 67 | ex 115 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 0 ≤ 𝐵)) | 
| 72 | 20, 71 | ralrimi 2568 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 0 ≤ 𝐵) | 
| 73 | 38, 72 | syl 14 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑘 ∈ 𝐴 0 ≤ 𝐵) | 
| 74 |   | nfcv 2339 | 
. . . . . . . . 9
⊢
Ⅎ𝑘0 | 
| 75 |   | nfcv 2339 | 
. . . . . . . . 9
⊢
Ⅎ𝑘
≤ | 
| 76 | 74, 75, 44 | nfbr 4079 | 
. . . . . . . 8
⊢
Ⅎ𝑘0 ≤
⦋𝑧 / 𝑘⦌𝐵 | 
| 77 | 46 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑘 = 𝑧 → (0 ≤ 𝐵 ↔ 0 ≤ ⦋𝑧 / 𝑘⦌𝐵)) | 
| 78 | 76, 77 | rspc 2862 | 
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 0 ≤ 𝐵 → 0 ≤ ⦋𝑧 / 𝑘⦌𝐵)) | 
| 79 | 40, 73, 78 | sylc 62 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 0 ≤ ⦋𝑧 / 𝑘⦌𝐵) | 
| 80 | 79 | adantr 276 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → 0 ≤ ⦋𝑧 / 𝑘⦌𝐵) | 
| 81 |   | simpr 110 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) | 
| 82 | 40 | adantr 276 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → 𝑧 ∈ 𝐴) | 
| 83 |   | fprodle.blec | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) | 
| 84 | 83 | ex 115 | 
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ≤ 𝐶)) | 
| 85 | 20, 84 | ralrimi 2568 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ≤ 𝐶) | 
| 86 | 85 | ad3antrrr 492 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → ∀𝑘 ∈ 𝐴 𝐵 ≤ 𝐶) | 
| 87 | 44, 75, 57 | nfbr 4079 | 
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ≤ ⦋𝑧 / 𝑘⦌𝐶 | 
| 88 | 46, 59 | breq12d 4046 | 
. . . . . . 7
⊢ (𝑘 = 𝑧 → (𝐵 ≤ 𝐶 ↔ ⦋𝑧 / 𝑘⦌𝐵 ≤ ⦋𝑧 / 𝑘⦌𝐶)) | 
| 89 | 87, 88 | rspc 2862 | 
. . . . . 6
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ≤ 𝐶 → ⦋𝑧 / 𝑘⦌𝐵 ≤ ⦋𝑧 / 𝑘⦌𝐶)) | 
| 90 | 82, 86, 89 | sylc 62 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → ⦋𝑧 / 𝑘⦌𝐵 ≤ ⦋𝑧 / 𝑘⦌𝐶) | 
| 91 | 33, 37, 53, 66, 70, 80, 81, 90 | lemul12ad 8969 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵) ≤ (∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑧 / 𝑘⦌𝐶)) | 
| 92 | 39 | eldifbd 3169 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) | 
| 93 | 30 | recnd 8055 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 94 | 26, 29, 93 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) | 
| 95 | 52 | recnd 8055 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) | 
| 96 | 24, 44, 25, 39, 92, 94, 46, 95 | fprodsplitsn 11798 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵)) | 
| 97 | 35 | recnd 8055 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℂ) | 
| 98 | 65 | recnd 8055 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) | 
| 99 | 24, 57, 25, 39, 92, 97, 59, 98 | fprodsplitsn 11798 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑧 / 𝑘⦌𝐶)) | 
| 100 | 96, 99 | breq12d 4046 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵) ≤ (∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑧 / 𝑘⦌𝐶))) | 
| 101 | 100 | adantr 276 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑧 / 𝑘⦌𝐵) ≤ (∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑧 / 𝑘⦌𝐶))) | 
| 102 | 91, 101 | mpbird 167 | 
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) | 
| 103 | 102 | ex 115 | 
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ 𝑦 𝐵 ≤ ∏𝑘 ∈ 𝑦 𝐶 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)) | 
| 104 |   | fprodle.a | 
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 105 | 3, 6, 9, 12, 19, 103, 104 | findcard2sd 6953 | 
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≤ ∏𝑘 ∈ 𝐴 𝐶) |