ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle GIF version

Theorem fprodle 11893
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11806 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prodeq1 11806 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
31, 2breq12d 4056 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶))
4 prodeq1 11806 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
5 prodeq1 11806 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑦 𝐶)
64, 5breq12d 4056 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶))
7 prodeq1 11806 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
8 prodeq1 11806 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
97, 8breq12d 4056 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
10 prodeq1 11806 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
11 prodeq1 11806 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐴 𝐶)
1210, 11breq12d 4056 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶))
13 prod0 11838 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
14 prod0 11838 . . . 4 𝑘 ∈ ∅ 𝐶 = 1
1513, 14eqtr4i 2228 . . 3 𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶
16 1re 8070 . . . . 5 1 ∈ ℝ
1713, 16eqeltri 2277 . . . 4 𝑘 ∈ ∅ 𝐵 ∈ ℝ
1817eqlei 8165 . . 3 (∏𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
1915, 18mp1i 10 . 2 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
20 fprodle.kph . . . . . . . . 9 𝑘𝜑
21 nfv 1550 . . . . . . . . 9 𝑘 𝑦 ∈ Fin
2220, 21nfan 1587 . . . . . . . 8 𝑘(𝜑𝑦 ∈ Fin)
23 nfv 1550 . . . . . . . 8 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
2422, 23nfan 1587 . . . . . . 7 𝑘((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
25 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
26 simplll 533 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
27 simplrl 535 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
28 simpr 110 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
2927, 28sseldd 3193 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
30 fprodle.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3126, 29, 30syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3224, 25, 31fprodreclf 11867 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℝ)
3332adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ∈ ℝ)
34 fprodle.c . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
3526, 29, 34syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℝ)
3624, 25, 35fprodreclf 11867 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℝ)
3736adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐶 ∈ ℝ)
38 simpll 527 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
39 simprr 531 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4039eldifad 3176 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
4130ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵 ∈ ℝ))
4220, 41ralrimi 2576 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℝ)
43 nfv 1550 . . . . . . . . . 10 𝑧 𝐵 ∈ ℝ
44 nfcsb1v 3125 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4544nfel1 2358 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℝ
46 csbeq1a 3101 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4746eleq1d 2273 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℝ ↔ 𝑧 / 𝑘𝐵 ∈ ℝ))
4843, 45, 47cbvral 2733 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
4942, 48sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
50 rsp 2552 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5149, 50syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5238, 40, 51sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5352adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5434ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶 ∈ ℝ))
5520, 54ralrimi 2576 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℝ)
56 nfv 1550 . . . . . . . . . 10 𝑧 𝐶 ∈ ℝ
57 nfcsb1v 3125 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐶
5857nfel1 2358 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐶 ∈ ℝ
59 csbeq1a 3101 . . . . . . . . . . 11 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
6059eleq1d 2273 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐶 ∈ ℝ ↔ 𝑧 / 𝑘𝐶 ∈ ℝ))
6156, 58, 60cbvral 2733 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
6255, 61sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
63 rsp 2552 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6462, 63syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6538, 40, 64sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℝ)
6665adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐶 ∈ ℝ)
67 fprodle.0l3b . . . . . . . 8 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
6826, 29, 67syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 0 ≤ 𝐵)
6924, 25, 31, 68fprodge0 11890 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ ∏𝑘𝑦 𝐵)
7069adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ ∏𝑘𝑦 𝐵)
7167ex 115 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → 0 ≤ 𝐵))
7220, 71ralrimi 2576 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 0 ≤ 𝐵)
7338, 72syl 14 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 0 ≤ 𝐵)
74 nfcv 2347 . . . . . . . . 9 𝑘0
75 nfcv 2347 . . . . . . . . 9 𝑘
7674, 75, 44nfbr 4089 . . . . . . . 8 𝑘0 ≤ 𝑧 / 𝑘𝐵
7746breq2d 4055 . . . . . . . 8 (𝑘 = 𝑧 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑧 / 𝑘𝐵))
7876, 77rspc 2870 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 0 ≤ 𝐵 → 0 ≤ 𝑧 / 𝑘𝐵))
7940, 73, 78sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ 𝑧 / 𝑘𝐵)
8079adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ 𝑧 / 𝑘𝐵)
81 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶)
8240adantr 276 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧𝐴)
83 fprodle.blec . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵𝐶)
8483ex 115 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵𝐶))
8520, 84ralrimi 2576 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵𝐶)
8685ad3antrrr 492 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∀𝑘𝐴 𝐵𝐶)
8744, 75, 57nfbr 4089 . . . . . . 7 𝑘𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶
8846, 59breq12d 4056 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
8987, 88rspc 2870 . . . . . 6 (𝑧𝐴 → (∀𝑘𝐴 𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
9082, 86, 89sylc 62 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 9014 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
9239eldifbd 3177 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
9330recnd 8100 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
9426, 29, 93syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
9552recnd 8100 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 11886 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
9735recnd 8100 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9865recnd 8100 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℂ)
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 11886 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
10096, 99breq12d 4056 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
101100adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
10291, 101mpbird 167 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
103102ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
104 fprodle.a . 2 (𝜑𝐴 ∈ Fin)
1053, 6, 9, 12, 19, 103, 104findcard2sd 6988 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wnf 1482  wcel 2175  wral 2483  csb 3092  cdif 3162  cun 3163  wss 3165  c0 3459  {csn 3632   class class class wbr 4043  (class class class)co 5943  Fincfn 6826  cc 7922  cr 7923  0cc0 7924  1c1 7925   · cmul 7929  cle 8107  cprod 11803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-ico 10015  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-proddc 11804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator