ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle GIF version

Theorem fprodle 12026
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11939 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prodeq1 11939 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
31, 2breq12d 4064 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶))
4 prodeq1 11939 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
5 prodeq1 11939 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑦 𝐶)
64, 5breq12d 4064 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶))
7 prodeq1 11939 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
8 prodeq1 11939 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
97, 8breq12d 4064 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
10 prodeq1 11939 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
11 prodeq1 11939 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐴 𝐶)
1210, 11breq12d 4064 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶))
13 prod0 11971 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
14 prod0 11971 . . . 4 𝑘 ∈ ∅ 𝐶 = 1
1513, 14eqtr4i 2230 . . 3 𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶
16 1re 8091 . . . . 5 1 ∈ ℝ
1713, 16eqeltri 2279 . . . 4 𝑘 ∈ ∅ 𝐵 ∈ ℝ
1817eqlei 8186 . . 3 (∏𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
1915, 18mp1i 10 . 2 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
20 fprodle.kph . . . . . . . . 9 𝑘𝜑
21 nfv 1552 . . . . . . . . 9 𝑘 𝑦 ∈ Fin
2220, 21nfan 1589 . . . . . . . 8 𝑘(𝜑𝑦 ∈ Fin)
23 nfv 1552 . . . . . . . 8 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
2422, 23nfan 1589 . . . . . . 7 𝑘((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
25 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
26 simplll 533 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
27 simplrl 535 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
28 simpr 110 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
2927, 28sseldd 3198 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
30 fprodle.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3126, 29, 30syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3224, 25, 31fprodreclf 12000 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℝ)
3332adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ∈ ℝ)
34 fprodle.c . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
3526, 29, 34syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℝ)
3624, 25, 35fprodreclf 12000 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℝ)
3736adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐶 ∈ ℝ)
38 simpll 527 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
39 simprr 531 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4039eldifad 3181 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
4130ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵 ∈ ℝ))
4220, 41ralrimi 2578 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℝ)
43 nfv 1552 . . . . . . . . . 10 𝑧 𝐵 ∈ ℝ
44 nfcsb1v 3130 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4544nfel1 2360 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℝ
46 csbeq1a 3106 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4746eleq1d 2275 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℝ ↔ 𝑧 / 𝑘𝐵 ∈ ℝ))
4843, 45, 47cbvral 2735 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
4942, 48sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
50 rsp 2554 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5149, 50syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5238, 40, 51sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5352adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5434ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶 ∈ ℝ))
5520, 54ralrimi 2578 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℝ)
56 nfv 1552 . . . . . . . . . 10 𝑧 𝐶 ∈ ℝ
57 nfcsb1v 3130 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐶
5857nfel1 2360 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐶 ∈ ℝ
59 csbeq1a 3106 . . . . . . . . . . 11 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
6059eleq1d 2275 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐶 ∈ ℝ ↔ 𝑧 / 𝑘𝐶 ∈ ℝ))
6156, 58, 60cbvral 2735 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
6255, 61sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
63 rsp 2554 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6462, 63syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6538, 40, 64sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℝ)
6665adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐶 ∈ ℝ)
67 fprodle.0l3b . . . . . . . 8 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
6826, 29, 67syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 0 ≤ 𝐵)
6924, 25, 31, 68fprodge0 12023 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ ∏𝑘𝑦 𝐵)
7069adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ ∏𝑘𝑦 𝐵)
7167ex 115 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → 0 ≤ 𝐵))
7220, 71ralrimi 2578 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 0 ≤ 𝐵)
7338, 72syl 14 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 0 ≤ 𝐵)
74 nfcv 2349 . . . . . . . . 9 𝑘0
75 nfcv 2349 . . . . . . . . 9 𝑘
7674, 75, 44nfbr 4098 . . . . . . . 8 𝑘0 ≤ 𝑧 / 𝑘𝐵
7746breq2d 4063 . . . . . . . 8 (𝑘 = 𝑧 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑧 / 𝑘𝐵))
7876, 77rspc 2875 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 0 ≤ 𝐵 → 0 ≤ 𝑧 / 𝑘𝐵))
7940, 73, 78sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ 𝑧 / 𝑘𝐵)
8079adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ 𝑧 / 𝑘𝐵)
81 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶)
8240adantr 276 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧𝐴)
83 fprodle.blec . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵𝐶)
8483ex 115 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵𝐶))
8520, 84ralrimi 2578 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵𝐶)
8685ad3antrrr 492 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∀𝑘𝐴 𝐵𝐶)
8744, 75, 57nfbr 4098 . . . . . . 7 𝑘𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶
8846, 59breq12d 4064 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
8987, 88rspc 2875 . . . . . 6 (𝑧𝐴 → (∀𝑘𝐴 𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
9082, 86, 89sylc 62 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 9035 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
9239eldifbd 3182 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
9330recnd 8121 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
9426, 29, 93syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
9552recnd 8121 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 12019 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
9735recnd 8121 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9865recnd 8121 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℂ)
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 12019 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
10096, 99breq12d 4064 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
101100adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
10291, 101mpbird 167 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
103102ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
104 fprodle.a . 2 (𝜑𝐴 ∈ Fin)
1053, 6, 9, 12, 19, 103, 104findcard2sd 7004 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wnf 1484  wcel 2177  wral 2485  csb 3097  cdif 3167  cun 3168  wss 3170  c0 3464  {csn 3638   class class class wbr 4051  (class class class)co 5957  Fincfn 6840  cc 7943  cr 7944  0cc0 7945  1c1 7946   · cmul 7950  cle 8128  cprod 11936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-ico 10036  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator