ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle GIF version

Theorem fprodle 11581
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11494 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prodeq1 11494 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
31, 2breq12d 3995 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶))
4 prodeq1 11494 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
5 prodeq1 11494 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑦 𝐶)
64, 5breq12d 3995 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶))
7 prodeq1 11494 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
8 prodeq1 11494 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
97, 8breq12d 3995 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
10 prodeq1 11494 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
11 prodeq1 11494 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐴 𝐶)
1210, 11breq12d 3995 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶))
13 prod0 11526 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
14 prod0 11526 . . . 4 𝑘 ∈ ∅ 𝐶 = 1
1513, 14eqtr4i 2189 . . 3 𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶
16 1re 7898 . . . . 5 1 ∈ ℝ
1713, 16eqeltri 2239 . . . 4 𝑘 ∈ ∅ 𝐵 ∈ ℝ
1817eqlei 7992 . . 3 (∏𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
1915, 18mp1i 10 . 2 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
20 fprodle.kph . . . . . . . . 9 𝑘𝜑
21 nfv 1516 . . . . . . . . 9 𝑘 𝑦 ∈ Fin
2220, 21nfan 1553 . . . . . . . 8 𝑘(𝜑𝑦 ∈ Fin)
23 nfv 1516 . . . . . . . 8 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
2422, 23nfan 1553 . . . . . . 7 𝑘((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
25 simplr 520 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
26 simplll 523 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
27 simplrl 525 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
28 simpr 109 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
2927, 28sseldd 3143 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
30 fprodle.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3126, 29, 30syl2anc 409 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3224, 25, 31fprodreclf 11555 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℝ)
3332adantr 274 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ∈ ℝ)
34 fprodle.c . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
3526, 29, 34syl2anc 409 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℝ)
3624, 25, 35fprodreclf 11555 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℝ)
3736adantr 274 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐶 ∈ ℝ)
38 simpll 519 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
39 simprr 522 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4039eldifad 3127 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
4130ex 114 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵 ∈ ℝ))
4220, 41ralrimi 2537 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℝ)
43 nfv 1516 . . . . . . . . . 10 𝑧 𝐵 ∈ ℝ
44 nfcsb1v 3078 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4544nfel1 2319 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℝ
46 csbeq1a 3054 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4746eleq1d 2235 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℝ ↔ 𝑧 / 𝑘𝐵 ∈ ℝ))
4843, 45, 47cbvral 2688 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
4942, 48sylib 121 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
50 rsp 2513 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5149, 50syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5238, 40, 51sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5352adantr 274 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5434ex 114 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶 ∈ ℝ))
5520, 54ralrimi 2537 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℝ)
56 nfv 1516 . . . . . . . . . 10 𝑧 𝐶 ∈ ℝ
57 nfcsb1v 3078 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐶
5857nfel1 2319 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐶 ∈ ℝ
59 csbeq1a 3054 . . . . . . . . . . 11 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
6059eleq1d 2235 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐶 ∈ ℝ ↔ 𝑧 / 𝑘𝐶 ∈ ℝ))
6156, 58, 60cbvral 2688 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
6255, 61sylib 121 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
63 rsp 2513 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6462, 63syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6538, 40, 64sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℝ)
6665adantr 274 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐶 ∈ ℝ)
67 fprodle.0l3b . . . . . . . 8 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
6826, 29, 67syl2anc 409 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 0 ≤ 𝐵)
6924, 25, 31, 68fprodge0 11578 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ ∏𝑘𝑦 𝐵)
7069adantr 274 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ ∏𝑘𝑦 𝐵)
7167ex 114 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → 0 ≤ 𝐵))
7220, 71ralrimi 2537 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 0 ≤ 𝐵)
7338, 72syl 14 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 0 ≤ 𝐵)
74 nfcv 2308 . . . . . . . . 9 𝑘0
75 nfcv 2308 . . . . . . . . 9 𝑘
7674, 75, 44nfbr 4028 . . . . . . . 8 𝑘0 ≤ 𝑧 / 𝑘𝐵
7746breq2d 3994 . . . . . . . 8 (𝑘 = 𝑧 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑧 / 𝑘𝐵))
7876, 77rspc 2824 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 0 ≤ 𝐵 → 0 ≤ 𝑧 / 𝑘𝐵))
7940, 73, 78sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ 𝑧 / 𝑘𝐵)
8079adantr 274 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ 𝑧 / 𝑘𝐵)
81 simpr 109 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶)
8240adantr 274 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧𝐴)
83 fprodle.blec . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵𝐶)
8483ex 114 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵𝐶))
8520, 84ralrimi 2537 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵𝐶)
8685ad3antrrr 484 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∀𝑘𝐴 𝐵𝐶)
8744, 75, 57nfbr 4028 . . . . . . 7 𝑘𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶
8846, 59breq12d 3995 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
8987, 88rspc 2824 . . . . . 6 (𝑧𝐴 → (∀𝑘𝐴 𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
9082, 86, 89sylc 62 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 8837 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
9239eldifbd 3128 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
9330recnd 7927 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
9426, 29, 93syl2anc 409 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
9552recnd 7927 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 11574 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
9735recnd 7927 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9865recnd 7927 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℂ)
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 11574 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
10096, 99breq12d 3995 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
101100adantr 274 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
10291, 101mpbird 166 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
103102ex 114 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
104 fprodle.a . 2 (𝜑𝐴 ∈ Fin)
1053, 6, 9, 12, 19, 103, 104findcard2sd 6858 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wnf 1448  wcel 2136  wral 2444  csb 3045  cdif 3113  cun 3114  wss 3116  c0 3409  {csn 3576   class class class wbr 3982  (class class class)co 5842  Fincfn 6706  cc 7751  cr 7752  0cc0 7753  1c1 7754   · cmul 7758  cle 7934  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator