ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle GIF version

Theorem fprodle 12146
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 12059 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prodeq1 12059 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
31, 2breq12d 4095 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶))
4 prodeq1 12059 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
5 prodeq1 12059 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑦 𝐶)
64, 5breq12d 4095 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶))
7 prodeq1 12059 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
8 prodeq1 12059 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
97, 8breq12d 4095 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
10 prodeq1 12059 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
11 prodeq1 12059 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐴 𝐶)
1210, 11breq12d 4095 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶))
13 prod0 12091 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
14 prod0 12091 . . . 4 𝑘 ∈ ∅ 𝐶 = 1
1513, 14eqtr4i 2253 . . 3 𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶
16 1re 8141 . . . . 5 1 ∈ ℝ
1713, 16eqeltri 2302 . . . 4 𝑘 ∈ ∅ 𝐵 ∈ ℝ
1817eqlei 8236 . . 3 (∏𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
1915, 18mp1i 10 . 2 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
20 fprodle.kph . . . . . . . . 9 𝑘𝜑
21 nfv 1574 . . . . . . . . 9 𝑘 𝑦 ∈ Fin
2220, 21nfan 1611 . . . . . . . 8 𝑘(𝜑𝑦 ∈ Fin)
23 nfv 1574 . . . . . . . 8 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
2422, 23nfan 1611 . . . . . . 7 𝑘((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
25 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
26 simplll 533 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
27 simplrl 535 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
28 simpr 110 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
2927, 28sseldd 3225 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
30 fprodle.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3126, 29, 30syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3224, 25, 31fprodreclf 12120 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℝ)
3332adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ∈ ℝ)
34 fprodle.c . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
3526, 29, 34syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℝ)
3624, 25, 35fprodreclf 12120 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℝ)
3736adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐶 ∈ ℝ)
38 simpll 527 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
39 simprr 531 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4039eldifad 3208 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
4130ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵 ∈ ℝ))
4220, 41ralrimi 2601 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℝ)
43 nfv 1574 . . . . . . . . . 10 𝑧 𝐵 ∈ ℝ
44 nfcsb1v 3157 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4544nfel1 2383 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℝ
46 csbeq1a 3133 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4746eleq1d 2298 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℝ ↔ 𝑧 / 𝑘𝐵 ∈ ℝ))
4843, 45, 47cbvral 2761 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
4942, 48sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
50 rsp 2577 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5149, 50syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5238, 40, 51sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5352adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5434ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶 ∈ ℝ))
5520, 54ralrimi 2601 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℝ)
56 nfv 1574 . . . . . . . . . 10 𝑧 𝐶 ∈ ℝ
57 nfcsb1v 3157 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐶
5857nfel1 2383 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐶 ∈ ℝ
59 csbeq1a 3133 . . . . . . . . . . 11 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
6059eleq1d 2298 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐶 ∈ ℝ ↔ 𝑧 / 𝑘𝐶 ∈ ℝ))
6156, 58, 60cbvral 2761 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
6255, 61sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
63 rsp 2577 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6462, 63syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6538, 40, 64sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℝ)
6665adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐶 ∈ ℝ)
67 fprodle.0l3b . . . . . . . 8 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
6826, 29, 67syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 0 ≤ 𝐵)
6924, 25, 31, 68fprodge0 12143 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ ∏𝑘𝑦 𝐵)
7069adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ ∏𝑘𝑦 𝐵)
7167ex 115 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → 0 ≤ 𝐵))
7220, 71ralrimi 2601 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 0 ≤ 𝐵)
7338, 72syl 14 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 0 ≤ 𝐵)
74 nfcv 2372 . . . . . . . . 9 𝑘0
75 nfcv 2372 . . . . . . . . 9 𝑘
7674, 75, 44nfbr 4129 . . . . . . . 8 𝑘0 ≤ 𝑧 / 𝑘𝐵
7746breq2d 4094 . . . . . . . 8 (𝑘 = 𝑧 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑧 / 𝑘𝐵))
7876, 77rspc 2901 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 0 ≤ 𝐵 → 0 ≤ 𝑧 / 𝑘𝐵))
7940, 73, 78sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ 𝑧 / 𝑘𝐵)
8079adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ 𝑧 / 𝑘𝐵)
81 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶)
8240adantr 276 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧𝐴)
83 fprodle.blec . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵𝐶)
8483ex 115 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵𝐶))
8520, 84ralrimi 2601 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵𝐶)
8685ad3antrrr 492 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∀𝑘𝐴 𝐵𝐶)
8744, 75, 57nfbr 4129 . . . . . . 7 𝑘𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶
8846, 59breq12d 4095 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
8987, 88rspc 2901 . . . . . 6 (𝑧𝐴 → (∀𝑘𝐴 𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
9082, 86, 89sylc 62 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 9085 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
9239eldifbd 3209 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
9330recnd 8171 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
9426, 29, 93syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
9552recnd 8171 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 12139 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
9735recnd 8171 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9865recnd 8171 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℂ)
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 12139 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
10096, 99breq12d 4095 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
101100adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
10291, 101mpbird 167 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
103102ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
104 fprodle.a . 2 (𝜑𝐴 ∈ Fin)
1053, 6, 9, 12, 19, 103, 104findcard2sd 7050 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wnf 1506  wcel 2200  wral 2508  csb 3124  cdif 3194  cun 3195  wss 3197  c0 3491  {csn 3666   class class class wbr 4082  (class class class)co 6000  Fincfn 6885  cc 7993  cr 7994  0cc0 7995  1c1 7996   · cmul 8000  cle 8178  cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-ico 10086  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator