ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodle GIF version

Theorem fprodle 11632
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11545 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prodeq1 11545 . . 3 (𝑤 = ∅ → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
31, 2breq12d 4013 . 2 (𝑤 = ∅ → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶))
4 prodeq1 11545 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
5 prodeq1 11545 . . 3 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐶 = ∏𝑘𝑦 𝐶)
64, 5breq12d 4013 . 2 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶))
7 prodeq1 11545 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
8 prodeq1 11545 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
97, 8breq12d 4013 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
10 prodeq1 11545 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
11 prodeq1 11545 . . 3 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐶 = ∏𝑘𝐴 𝐶)
1210, 11breq12d 4013 . 2 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵 ≤ ∏𝑘𝑤 𝐶 ↔ ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶))
13 prod0 11577 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
14 prod0 11577 . . . 4 𝑘 ∈ ∅ 𝐶 = 1
1513, 14eqtr4i 2201 . . 3 𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶
16 1re 7947 . . . . 5 1 ∈ ℝ
1713, 16eqeltri 2250 . . . 4 𝑘 ∈ ∅ 𝐵 ∈ ℝ
1817eqlei 8041 . . 3 (∏𝑘 ∈ ∅ 𝐵 = ∏𝑘 ∈ ∅ 𝐶 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
1915, 18mp1i 10 . 2 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 ≤ ∏𝑘 ∈ ∅ 𝐶)
20 fprodle.kph . . . . . . . . 9 𝑘𝜑
21 nfv 1528 . . . . . . . . 9 𝑘 𝑦 ∈ Fin
2220, 21nfan 1565 . . . . . . . 8 𝑘(𝜑𝑦 ∈ Fin)
23 nfv 1528 . . . . . . . 8 𝑘(𝑦𝐴𝑧 ∈ (𝐴𝑦))
2422, 23nfan 1565 . . . . . . 7 𝑘((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦)))
25 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
26 simplll 533 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
27 simplrl 535 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
28 simpr 110 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
2927, 28sseldd 3156 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
30 fprodle.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3126, 29, 30syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3224, 25, 31fprodreclf 11606 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℝ)
3332adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ∈ ℝ)
34 fprodle.c . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
3526, 29, 34syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℝ)
3624, 25, 35fprodreclf 11606 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℝ)
3736adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐶 ∈ ℝ)
38 simpll 527 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
39 simprr 531 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4039eldifad 3140 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
4130ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵 ∈ ℝ))
4220, 41ralrimi 2548 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℝ)
43 nfv 1528 . . . . . . . . . 10 𝑧 𝐵 ∈ ℝ
44 nfcsb1v 3090 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐵
4544nfel1 2330 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵 ∈ ℝ
46 csbeq1a 3066 . . . . . . . . . . 11 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4746eleq1d 2246 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐵 ∈ ℝ ↔ 𝑧 / 𝑘𝐵 ∈ ℝ))
4843, 45, 47cbvral 2699 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
4942, 48sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ)
50 rsp 2524 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐵 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5149, 50syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℝ))
5238, 40, 51sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5352adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵 ∈ ℝ)
5434ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶 ∈ ℝ))
5520, 54ralrimi 2548 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℝ)
56 nfv 1528 . . . . . . . . . 10 𝑧 𝐶 ∈ ℝ
57 nfcsb1v 3090 . . . . . . . . . . 11 𝑘𝑧 / 𝑘𝐶
5857nfel1 2330 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐶 ∈ ℝ
59 csbeq1a 3066 . . . . . . . . . . 11 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
6059eleq1d 2246 . . . . . . . . . 10 (𝑘 = 𝑧 → (𝐶 ∈ ℝ ↔ 𝑧 / 𝑘𝐶 ∈ ℝ))
6156, 58, 60cbvral 2699 . . . . . . . . 9 (∀𝑘𝐴 𝐶 ∈ ℝ ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
6255, 61sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ)
63 rsp 2524 . . . . . . . 8 (∀𝑧𝐴 𝑧 / 𝑘𝐶 ∈ ℝ → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6462, 63syl 14 . . . . . . 7 (𝜑 → (𝑧𝐴𝑧 / 𝑘𝐶 ∈ ℝ))
6538, 40, 64sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℝ)
6665adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐶 ∈ ℝ)
67 fprodle.0l3b . . . . . . . 8 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
6826, 29, 67syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 0 ≤ 𝐵)
6924, 25, 31, 68fprodge0 11629 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ ∏𝑘𝑦 𝐵)
7069adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ ∏𝑘𝑦 𝐵)
7167ex 115 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → 0 ≤ 𝐵))
7220, 71ralrimi 2548 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 0 ≤ 𝐵)
7338, 72syl 14 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 0 ≤ 𝐵)
74 nfcv 2319 . . . . . . . . 9 𝑘0
75 nfcv 2319 . . . . . . . . 9 𝑘
7674, 75, 44nfbr 4046 . . . . . . . 8 𝑘0 ≤ 𝑧 / 𝑘𝐵
7746breq2d 4012 . . . . . . . 8 (𝑘 = 𝑧 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑧 / 𝑘𝐵))
7876, 77rspc 2835 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 0 ≤ 𝐵 → 0 ≤ 𝑧 / 𝑘𝐵))
7940, 73, 78sylc 62 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 0 ≤ 𝑧 / 𝑘𝐵)
8079adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 0 ≤ 𝑧 / 𝑘𝐵)
81 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶)
8240adantr 276 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧𝐴)
83 fprodle.blec . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵𝐶)
8483ex 115 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵𝐶))
8520, 84ralrimi 2548 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵𝐶)
8685ad3antrrr 492 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∀𝑘𝐴 𝐵𝐶)
8744, 75, 57nfbr 4046 . . . . . . 7 𝑘𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶
8846, 59breq12d 4013 . . . . . . 7 (𝑘 = 𝑧 → (𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
8987, 88rspc 2835 . . . . . 6 (𝑧𝐴 → (∀𝑘𝐴 𝐵𝐶𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶))
9082, 86, 89sylc 62 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → 𝑧 / 𝑘𝐵𝑧 / 𝑘𝐶)
9133, 37, 53, 66, 70, 80, 81, 90lemul12ad 8888 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
9239eldifbd 3141 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
9330recnd 7976 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
9426, 29, 93syl2anc 411 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
9552recnd 7976 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
9624, 44, 25, 39, 92, 94, 46, 95fprodsplitsn 11625 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
9735recnd 7976 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9865recnd 7976 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐶 ∈ ℂ)
9924, 57, 25, 39, 92, 97, 59, 98fprodsplitsn 11625 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶))
10096, 99breq12d 4013 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
101100adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → (∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ≤ (∏𝑘𝑦 𝐶 · 𝑧 / 𝑘𝐶)))
10291, 101mpbird 167 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
103102ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵 ≤ ∏𝑘𝑦 𝐶 → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ≤ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
104 fprodle.a . 2 (𝜑𝐴 ∈ Fin)
1053, 6, 9, 12, 19, 103, 104findcard2sd 6886 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wnf 1460  wcel 2148  wral 2455  csb 3057  cdif 3126  cun 3127  wss 3129  c0 3422  {csn 3591   class class class wbr 4000  (class class class)co 5869  Fincfn 6734  cc 7800  cr 7801  0cc0 7802  1c1 7803   · cmul 7807  cle 7983  cprod 11542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator