ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resabs1 GIF version

Theorem resabs1 4913
Description: Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
resabs1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))

Proof of Theorem resabs1
StepHypRef Expression
1 resres 4896 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
2 sseqin2 3341 . . 3 (𝐵𝐶 ↔ (𝐶𝐵) = 𝐵)
3 reseq2 4879 . . 3 ((𝐶𝐵) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
42, 3sylbi 120 . 2 (𝐵𝐶 → (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
51, 4syl5eq 2211 1 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cin 3115  wss 3116  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by:  resabs1d  4914  resabs2  4915  resiima  4962  fun2ssres  5231  fssres2  5365  f2ndf  6194  smores3  6261  tfrlemisucaccv  6293  tfr1onlemsucaccv  6309  tfrcllemsucaccv  6322  djudom  7058  setsresg  12432
  Copyright terms: Public domain W3C validator