ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rescom GIF version

Theorem rescom 4933
Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
rescom ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)

Proof of Theorem rescom
StepHypRef Expression
1 incom 3328 . . 3 (𝐵𝐶) = (𝐶𝐵)
21reseq2i 4905 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ↾ (𝐶𝐵))
3 resres 4920 . 2 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
4 resres 4920 . 2 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
52, 3, 43eqtr4i 2208 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cin 3129  cres 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-opab 4066  df-xp 4633  df-rel 4634  df-res 4639
This theorem is referenced by:  resabs2  4939  setscom  12502
  Copyright terms: Public domain W3C validator